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CHAPTER  1 

INTRODUCTION 

Transportation policy research assesses the effect of policy changes, such as the 

imposition of a parking charge or the augmentation of passenger rail service, on 

individuals travel behavior. Over the last few decades, the Conditional Logit Model 

(CLM) has risen to be the theoretical and analytical model of choice for transportation 

policy studies. However, the current use of the discrete choice theory underlying the 

Conditional Logit Model may be flawed. The issue is the reported low levels of accuracy 

on forecasting individual travel behavior by the empirical models formed by current data. 

Horowitz (1985) indicates based on his study that few existing discrete mode choice 

models can explain as much as 40% - 50% of observed variation in choices, and many 

explain less than 30%. The low accuracy of prediction explains that current empirical 

models have significant biases or errors.   

 The utility derived from each potential travel alternative is assumed as the basis 

for a traveler's mode choice decision. Different from the utility function used in classical 

economics, the utility term used in the discrete choice models is expressed as indirect 

utility function (Ben-Akiva & Lerman, 1985). An indirect utility function is a derived 

utility function under given constraints. Explicit inclusion of constraint into indirect 

utility function is necessary if economic theory is to be fully incorporated in the discrete 

choice models.  The report will unfold in the following fashion.  

 Chapter 2 presents a detailed review of the advances related with the Conditional 

Logit Model. It includes the development of theoretical model and relevant empirical 

findings. 

 Chapter 3 proposes the hypothesis. The null hypothesis states that there is no 

difference between treating the effect of resource constraint as a random utility term and 

as a component of systematic utility term. The alternative hypothesis states that 



constraints explicitly exist in an individual’s travel mode switching behavior and 

therefore significantly affect individual mode switching behavior. Ignoring these 

constraints in the systematic utility term will cause the biases in the model calibration.  

 The alternative hypothesis is based on a modified or extended theoretical model, 

the Constrained Conditional Logit Model (CCLM). Chapter 4 gives a detailed description 

about the formation and inclusion of constraints in utility term. The CCLM model 

explicitly incorporates constraints on individual travel mode switching. It is noteworthy 

that constraints that govern travel mode switching behavior are no longer limited to 

monetary and time budgets in this report as in classical utility maximization framework in 

economics, but are extended generally to the all resources which are consumed on the 

travel.  

 Through the simulation described in Chapter 5, the internal validity of the 

Constrained Conditional Logit Model is examined. The result shows that the Constrained 

Conditional Logit Model is capable of recovering the effects of constraints if these 

constraints do exist. The simulation result also shows that ignoring of these effects would 

cause significant biases in estimation and evaluation of the effects of a travel 

environmental change. 

 An empirical study is made to test the hypothesis about the existence of 

constraints. The empirical study involves Stated Choice surveys (SC) administered to the 

commute employees  working at two sites in Newark, New Jersey. Chapter 6 introduces a 

detailed information about the survey sites and the survey process. The surveys were 

administered through pencil and paper questionnaires which were sent to respondents 

from the two sites.  

 Chapter 7 describes the empirical model’s calibration and the hypothesis testing. 

The Hypothesis proposed in Chapter 3 is tested by χ2  and  t  tests. The χ2  test is for the 

equality of the coefficients underlying the CCLM model and the CLM model. The test 

results show that CCLM model’s coefficients are significantly different from those 



generated by the CLM model. The t  test is used as a significance test for the constraints. 

The t test result shows that effects of the constraints on travel cost and time exist in 

individual commute mode switching behavior.  

  As the two surveys were performed on the same CBD, a series of joint estimations 

were conducted with different trials for the scale factor ratios. A test was executed to 

examine if the two samples can be accepted as drawn from the same target population. 

The tests include two sub-test topics : 

 a) parameter estimate identity for the two samples, and  

 b) variance identity for the random terms of the two samples.  

 The both test results show that the two samples have identical parameters in the 

systematic utility terms, but different variances of the random utility terms. The scale 

factor ratio or the variance ratio between the two samples is 1.3 in this study. After the 

adjustment by means of scale factor ratio, a unique empirical model was obtained using 

the pooled data matrix. 

  External validity test for the jointly estimated model is executed in Chapter 8. A 

commute mode switching and mode split analysis is made based upon the comparison of 

the forecast and real mode shift due to pressure formed by a $3 parking charge. The cross-

sectional experimental design is used in the external validity test. The WP employees are 

considered as the sub-sample assigned to the control condition as free parking currently 

prevails there. The MBL employees, on the other hand, are considered as the sub-sample 

assigned to the test condition because the actual parking charge is $3 there. The CCLM 

model successfully predicts the effect of a parking charge difference on the use of single 

occupant vehicles for commuting purposes. 

 Finally, Chapter 9 presents the conclusion related to the constraints in individual 

commute mode switching.  The Constrained Conditional Logit Model can effectively 

correct the biases and errors caused by exclusion of constraints in indirect utility function. 



The Constrained Conditional Logit Mode is identified to be a helpful tool for assessing 

the effect of transportation policy. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



chapter  2 

LITERATURE   REVIEW 

Discrete mode choice theory underlying the travel demand study has been developed in 

recent years as the advances of the relevant sciences, such as microeconomics, 

psychology and sociology. Therefore, modern travel demand analysis is considered as an 

extension of these branches of science. This chapter offers a brief  review of the 

theoretical and methodological advances of the discrete mode choice on these relative 

fields.  

 

Error! Bookmark not defined.2.1   Rationality in Decision Making 

Economic theory, since it become systematic, has been based on some notion of 

rationality. “It seems to be asserted that a theory of the economy must be based on 

rationality, as a matter of principle. Otherwise, there can be no theory” (Arrow ,1986). 

Human behavior is almost uniformly considered as a rational activity because “everyone 

agrees that people have reasons for what they do. They have motivations, and they use 

reason (well or badly) to respond to these motivations and reach their goals” (Simon, 

1986).  “Capitalists choose to invest in the industry yielding the highest rate of return, and 

individuals always choose the alternative which is the best one for their interest” (Arrow, 

1986).  

 Reitz (1977) defines the rationality in individuals behavior: “traditional economic 

theory postulates an economic man, who, in the course of being economic is also called 

rational. This man is assumed to have comprehensive knowledge of the relevant aspects 

of his environment which, if not absolutely complete, is at least impressively clear.  He is 

assumed also to have a well-organized and stable system of preferences, and a skill in 



computation that enables him to calculate, for the alternative courses of action that are 

available to him, which of these will permit him to reach the highest attainable point on 

his preference scale.” 

 The rationality in decision making process is generally interpreted as “the 

maximization of utility for the individual under a budget constraint” (Arrow, 1986). Here, 

utility is defined as the benefit derived from the alternative. Based upon this definition, an 

individual’s demand, as a function of all attributes of utility, is an immediate implication 

and becomes a most important formula in economics. Utility formation becomes the most 

essential element in various models of demand function. 

 The application of rationality theory has been criticized in some fields. Burnett 

and Hanson (1982) argue that “the assumption that intra-urban travel is the outcome of a 

rational decision-making process, even with limited information, seems to be dubious 

since increasing evidence indicates that travel is a stable daily routine, also a constrained 

choice for most likely a deep-seated avoidance behavior for many, too.”  

 As a summary, Mauheim’s (1979) description about the limitation of rational 

decision making process is presented here; 

1) The alternatives: Do consumers really perceive all of the available 

alternatives? Do they consciously and deliberately consider  every  one  of  

them?  Or do they scan the set of alternatives  and only examine carefully a 

small number? How does past experience influence which  alternatives  a  

consumer  will  consider  explicitly? 

2) The consequences:  How  do  consumers  perceive  consequences?  What  

consequences  do  they  consider  important?  What  kinds  of  biases are there  

in  their perceptions of  those consequences? How are these perceptions biased 

by individual experiences, word of mouth, or other information? 



3) The decision process: Does the consumer go through a careful analysis and 

calculation of each alternative to reach a decision? Does he really formalize 

his preferences explicitly in the form of an indifference curve? Does he even 

behave as if he had formalized his preferences in this way? Does he choose 

among all alternatives in a single step or in a sequence of decisions? 

4) The static nature of the model: Don’t consumers change their information, and 

their preferences, over time? Don’t they “learn” from actual experiences and 

sometimes shift choices?         

  If the above assumption about the decision making process is true, whether a 

certain behavior is “rational” or reasonable” can be reached only by viewing the behavior 

in the context of a set of premises or “givens”(Simon,1986). These givens include the 

situation in which the behavior takes place, the goals it is aimed at realizing, and the 

computational means available for determining how the goals can be attained. An 

individual’s activity should not always be thought as rational behavior because individual 

sometimes  

1) recognize only a limited number of possible alternatives,  

2) be aware of only a few of the consequences of each alternative, and  

3) have access to only a limited, approximate, simplified model of the real situation. 

 In corresponding to the rational decision making process, some modifications 

have been made in the recent years. “The decision maker satisfies, rather than maximize, 

the alternatives under imperfective information awareness; that is, he looks for a course 

of action that is ‘good enough’, to meet a minimal set of requirements”(Simon, 1976).  A 

business person, for example, often decides to invest in a new enterprise if he expects it 

to return a “satisfactory profit," without bothering to compare it with all the alternative 

investments open to him. 

 As the consequence of limited computation ability, when deciding among 

alternative courses of action, individuals use simple, local and myopic choice procedures 



which adapt choice behavior to their capacity limitations. “The simplified approach fits 

the limited information-processing capacities of human beings.” The world is peopled by 

creatures of “bounded or limited rationality”, he says, and these creatures constantly 

resort to gross simplifications when dealing with complex decision problems. 

 Palma, Myers and Papageorgiou (1994) develop a myopic adjustment model for 

an individual imperfect ability. The decision principle underlying this model is that 

instead of finding at once the best allocation of resources,  an individual myopically 

adjusts his current allocation toward higher utility. Switching to a particular alternative is 

assumed as the consequence of comparing different utility increments. 

 Another suggestion is proposed by Sonis (1986). He indicates that “by different 

way from a totally egoistic omniscient creature who is supposed to accomplish a rational 

free choice between different competitive alternatives on the basis of the individual’s 

utility maximization principle, homo socialis is an individual whose behavior is based on 

the interaction among choice-makers and on the limitation and learning within an active 

uncertain environment.” The choice behavior of homo socialis is directed by the 

subjective mental evaluation of the marginal temporal utilities. Finally he proposes: “a 

decision-maker dose not choose an alternative on the basis of a comparison of utilities, 

but on the basis of a comparison of the temporal marginal utilities (interpreted as the 

expectations of a gain in the future) which may be influenced by social interaction, 

imitation and learning processes between choice makers.”  

 Many other theories which are quite different from utility maximization have also 

been devised. Habit formation, for example,  was made into a theory. “For a given price-

income change, the individual chooses the bundle that satisfies the bundle constraints and 

that which requires the least change from the previous consumption bundle. It is different 

from utility maximization” (Constantinides, 1990). 

 



Error! Bookmark not defined.2.2    Discrete Choice Model -- Application of Consumer 

Theory 

Travel mode choice models are the application of the probability decision theory (Ben-

Akiva and Lerman,1985). This theory recognizes the imperfect information attainment for 

decision makers. A random or probabilistic element is included into decision process 

(Palma, Myers, and Papageorgiou, 1994). The randomness can be incorporated in a 

number of ways and many models are therefore developed in travel demand analysis 

(Bovy and Bradley, 1985, Golob and Meurs, 1987). The techniques that extend decision 

theory of microeconomics to the choices among the discrete sets of alternatives are 

provided by a class of mathematical models called discrete choice models (Ben-Akiva 

and Lerman, 1985, Domencich and McFadden, 1975). These models, like other standard 

models in microeconomics, assume that an individual’s preferences among the possible 

alternatives can be described by a utility function. An individual selects the alternative 

with the greatest utility. However, these models differentiate themselves from other 

discrete choice models by accounting for the effect of uncertainty of human behavior 

using a random component ε.  Mauheim (1979) lists the factors which have contributions 

to this randomness. 

1) There may be service attributes that are important to some consumers but have 

not been explicitly represented in our estimation of their utilities. For example, 

comfort, perception of security, or other non-quantifiable attributes. 

2) Consumers may not perceive all the alternatives open to them or may not have 

correct information on the attributes of the alternatives. For example, because 

of poor marketing, consumers are often not aware of route and schedule 

information that might influence their decision. 



3) There may be essentially random elements in the consumer’s behavior, in that 

his preferences vary from day to day or are influenced by external events. For 

example, the weather or the availability of the family car. 

 The most practically used discrete choice model, exemplified by the Condtional 

Logit Model, is developed by Domencich and McFadden (1975). The rationality is still 

executed by optimization of the utility function. Utility is interpreted as the satisfaction 

obtained from each alternative. The attractiveness of a particular alternative i  for 

individual n can be quantified in terms of a “perceived attractiveness” utility function Uni.  

 The utility function in discrete choice models usually consists of two components, 

systematic utility term Vni and random term εni. The former can be expressed by a function 

of explanatory attributes regarding the alternatives. The latter is used to present omitted 

attributes and un-explanatory attributes for the uncertainty in individual's behavior. The 

utility can be written as : 

  

ni ni niU = V + ε                                                                                                                          (2.1)  

 The form of the joint probability distribution describing the εni decides the form of 

choice probability function. Now, the probability of choosing a particular alternative i can 

be converted to the probability Pn(i) that the utility derived from alternative i  is greater 

than any other alternative j for individual n. 

                                   Pn(i) = P(Uni>Unj, for all j≠ i, for individual  n) 

                                      = P(Vni - Vnj +εni> εnj,             for  all  j≠ i )                              

(2.2) 

 For a particular εni , the conditional probability Pn(i | εni) can be derived : 



                         nP (i )= f ( )dni
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∏
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∫                                                  (2.3) 

where fnj(εnj) is the probability density function of εnj. Hence, the probability of choosing 

alternative i  can be obtained as ; 
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 The random variable εia has joint distribution fn(εni, εn2, ... εnJ) and the variance 

matrix can be expressed as 
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(2.5)  

where, σnii  is the variance of random variable εni  and can be simplified as σni , and σnjj is 

the co-variance between εni  and εnj. 

 Generally, the integration in equation (2.4) is not tractable, and an approximation 

or numerical method has to be used to obtain the result. Some special functions can make 

the integration tractable. McFadden uses the Gumbel Distribution function as the joint 

probability function and variables εni (i=1,2...J) are assumed to be independent and 

identically distributed (IID) across individual n as well as alternative i. The probability 

function is given by Equation (2.6), 

                                F ni ni ni ni( ) exp[ exp( ( ))]ε µ ε δ= − − −                                         (2.6) 

where 

 δni-- position parameter 

 µni -- scaling factor which is a function of variance σni
2  with relationship: 

                                  µ π σni ni
2 2 26= / ( )                                                             (2.7) 



          Now, the probability of choosing alternative i can be derived ( see 

appendix A ) when δni is assumed to be 0.            

•                                     n
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1

                                                  (2.8) 

 This model is called the Conditional Logit Model and has been widely applied in 

transportation planning. This model has become something of a standard in transportation 

planning. McFadden (1974) derives the asymptotic properties of the maximum likelihood 

estimator of the Conditional Logit Model in the linear parameter case.  

 It is worthwhile to indicate that “Presumably, modal choices also depend on the 

socioeconomic characteristics (say, s) of the individual making the decision. Logically, s 

would be attached to all the choices of a given commuter; but it is easily seen that the 

effect of this specification is that it is then impossible to estimate the impact of s on 

choice.”...... “ It is therefore conventional to attach these characteristics to one of the 

modes, and to define the corresponding places in the characteristics vector of the other 

modes to be zero” (Viton, 1989). 

 In addition to the Conditional Logit Model, multinomial probit model is also 

studied and applied in some cases. The major difference of probit model from logit model 

is the assumption about distribution of the random term in utility function Un. Ben-Akiva 

& Lerman (1985) gives a expression of binary probit model as: 
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 Since random term εni  is assumed as a multivariate normal distributed variable 

with a vector of means 0 and a  J×J variance-covariance matrix Σε,  probit model can be 

used to incorporate effect of the correlation between different alternatives to avoid the 

problem associated to IID.  However, only very limited applications have appeared in 

travel demand literature (Daganzo, Bouthelier, and Sheffi, 1977), and there is still no 

evidence to suggest in which situations the greater generality of multinomial probit is 

worth the additional computational problems resulting from its use.  

 

Error! Bookmark not defined.2.3     Dynamic Behavior Model and Panel Data 

Although the Conditional Logit Model achieved great success, it is necessary to indicate 

that the fourth question proposed by Mauheim (1979) is still existed. Travelers actually 

change their information and their preferences over time, and they “learn” from actual 

experiences. 

 The interest in the study of travel behavior dynamics has grown considerably in 

recent years. This is because more and more empirical studies show that some attributes 

regarding travel mode choice change over time, as well as individuals and alternatives. 

“Continuing sub-urbanization, improvement of communication and traffic conditions, 

and air pollution policy, influence individuals' travel mode choice. On the other hand, 

changes in reaction patterns of individuals, household’s size, income, and even car 

ownership, also contribute to the travel mode choice. Therefore, decision makers are very 

often required to make continuous decisions” (Kitamura,1990).  

 In addition to the exogenous attributes described above, endogenous attributes 

would also be responsible for the dynamic characteristics of individual’s behavior. 

Endogenous attributes comprise characteristics arising from previous decisions and 

choices and are conceptually quite different from exogenous attributes. The importance of 



such endogenous attributes may be adduced from several broad areas of  social science 

theory. For example, notions of cumulative inertia and cumulative stress have variously 

informed theoretical work on such diverse decisions as job quitting, divorce, and 

residential move. Thus a decision to quit a job, divorce, or move home is postulated to be 

dependent upon the time interval since commencing the job, marrying, or the previous 

residential move, respectively.  

 Perhaps the most obvious fact contributing to the dynamic behavior is the time 

lags on decision making. Kitanura (1983) summaries: “not immediately acquired 

information, small magnitude change which not prompted any action, and constraints 

imposed on the household may all lead to apparent response lags.” The dynamic discrete 

choice models, in corporation with panel date analysis, are to evaluate the impact of a 

change in transportation system as well as the impact of endogenous attribute on 

individual’s behavior.   

 From a statistical viewpoint, panel data has definite advantage. Panel data offers 

accurate estimate of changes than would cross-sectional data. The essence of panel data is 

the information on a fixed sample of decision-makers across time so that the statements 

can be made about behavioral response at individual level (Fischer and Nijkamp, 1987).  

Panel data may be obtained by classical panel surveys which involve the repeated 

measurements on the same individuals at different points in time. The great potential of 

panel data for dynamic modeling stems from both the temporal nature of data and the data 

linkage for each decision maker.  Panel data enables one to explicitly recognize the inter-

temporal nature of choice outcome, especially the role of state dependence and serial 

correlation.  Therefore, there is no doubt that dynamic models of discrete choice have to 

be based on panel data. 

 The simplest dynamic discrete choice model is the non-stationarity or temporal 

independence model. This model is based on the assumption that the decisions made at 



different time points are independent each other. Rust (1988) regards recurrent choice as a 

sequence of static utility maximizing choices by decision makers. Let  t =1,2...,T  denote 

an exogenously given sequence of time periods and assume that conditional on 

explanatory attributes matrix (Xni1,...Xnit,...XniT),  the sequence of decision (i1 ... it ... iT) 

obeys a multinomial choice process with a conditional density function given by: 
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T
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 In corresponding to the non-stationarity, two other situations, structural 

dependence and serial correlation, are more complex. Structural state dependency refers 

to the dependency of current individual choice probabilities on preceding individual 

history. Structural state dependence may arise due to a number of reasons. “Choice 

outcomes may depend on previous choice (Markovian effect), on the length of time the 

current state has been occupied (duration dependence effects), on previous inter-choice 

times (lagged duration dependence effect), and on the number of times different states 

have been occupied (occurrence dependence effects)” (Fischer and  Nijkamp, 1987).  

 Serial correlation refers to the variation among individuals due to both observed 

and unobserved external influences including variation caused by censoring of the panel 

data base. Unobserved attitudes towards alternatives may play a major role in serial 

correlation (Morikawa, 1994). In mode choice analysis, for instance, latent attitudes 

towards modes, such as I  love driving a car,  can predominantly influence mode choice 

behavior.  

 Tardiff (1980) is one of the first who made as attempt to extend discrete choice 

methodology by introducing structural state dependence and  heterogeneity in utility 

functions as: 



  U x dnit k nikt ij nj t ni nit
j
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*                                   (2.11) 

where, dnj(t-1) is a dummy variable. If  individual  i  chooses mode j in previous period t-1, 

dnj(t-1)  =1, and dnj(t-1) = 0 otherwise. The εni refers to unobserved time-invariant effects 

(fixed effects of unobserved variables) and ζnit varies among the decision makers and 

time periods. By putting various terms in Equation (2.11) equal to zero, Tardiff (1980) 

considers two special cases of the general data discrete choice model: model with 

structural state dependence and model with serial correlation. If we assume the transfer 

parameter γij = 0  for all individuals and alternatives, Equation (2.11) becomes structural 

serial correlation model, since the choices depend upon observed serial correlation effect. 

Remove εni, Equation (2.11) becomes a structural state dependence model,  because the 

effects of previous choices upon current choices are explicitly considered. 

 Daganzo, Bouthelier, and Sheffi (1977) performs a case study of serial correlation 

model and structural state dependence effects by a two-periods binary probit model.(i = -

1,1 and t = 1,2)  Let Xit  stand for the attribute vector of the ith alternative and time t , and 

assume parameter βt  in utility function as a normal distributed variable: 

   βt ∼  MVN(βt, Σβt)                                                             (2.12) 

The correlation between β1 and β2 may be specified if the joint distribution of between β1 

and β2 is defined as: 
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 Another fact needed to pay an attention to is the habitual in the discrete choice 

behavior. Goodwin (1977) defines habit in individual’s behavior; “It is convenient to use 

the word ‘habit’ to signify various sources of resistance to a change, that, on purely 

economic or ‘rational’ ground, would be made. These sources include a reluctance to 
                                                 
* In order to keep inconsistency with the notes used in this report, we replace the sub-index. 



upset an ordered and well-understood routine, perception thresholds below which changes 

in the relative attractiveness of the modes are not noticed, and barriers to the relevant 

information reaching the individual. ... I would be expected that such effects will be time-

dependent, although it is not clear how”. 

 Pollak (1970) is one of the first who incorporate habit into utility function. One of 

the utility function family is 

  U a x bk k k
k

n

= −
=
∑ log( )

1

                                           (2.14) 

where, xk stands for the level of consumption of the kth good.  ak and bk are parameters. 

 The dynamic models have been used in some transportation case studies 

(Basmann 1994 and Hartgen 1974). The results of these studies show that dynamic 

models represent travel behavior more accurately and meaningfully, because dynamic 

assumption about the decision making environment and behavior is much closer to the 

real behavior than that in static models. Much more data about individual’s behavior and 

alternatives has been employed in the establishment of these models. However, how to 

capture dynamic process in a quantitative model for travel behavior has not been well 

addressed and empirical examinations have not been made as much as the study for the 

case of static choice models. 

 

2.4   Revealed Preference, Stated Preference and RP/SP Combination 

In dynamic discrete choice models, a special case is that the first term and the third term 

of right side of Equation (2.11) equal to zero, which leads to a first-order Markov model 

of spatial choice. If previous choice is alternative j, the probability of choosing alternative 

i  is called switching probability and is expressed as ; 



                  Prob(j,i) = P(Yn(t)=i/Yn(t-1)=j) = Pn(i/j)                              

(2.15) 

  “An empirical examination showed that while the estimated models based on 

stated preference data tend to over-estimate the actual modal switching behavior due to 

the changes in transport services it is very important to incorporate the state dependence 

effects into disaggregate modal choice models”, Hirobata and Kawakami (1990) indicate. 

Their conclusion is based upon their study of switching behavior by a  mode switching 

model on an intention data or stated preference data.  

 The survey of stated preferences (SP) is an alternative source of data on switching 

behavior instead of revealed panel data (RP). In contrast to the revealed preference survey 

which records traveler’s actual choice and relative explanatory attributes, a traveler is 

presented with a planned or a potential future change in the transportation system and is 

asked if and how he intends to modify his current choice in response to the change. 

 Stated preference models and data were introduced to transportation researchers 

by Louviere (1988).  Stated preference models have been applied successfully in a variety 

of transport contexts such as route choice analysis (Bovy and Bradley, 1985).  Morikawa 

(1994) studies and presents different characteristics of RP and SP data as follows: 

1) RP data are cognitively congruent with actual behavior, but SP date may not 

be, 

2) SP methods can directly treat non-existing services and alternatives, 

3) Trade-off among attributes are more clearly observable from SP date, and  

4) Individual-specific coefficient values may be estimable from SP data. 

 Despite considerable progress in designing SP experiments and estimating 

stochastic choice models from them, the question of relating the results to behavior in the 

real market of interest remains open.  One of the central issues is that distribution of 



random term εni could not be expected as identical to that which presents in RP 

experiments. This is because that the factors, such as learning, boredom, or anchoring to 

earlier tasks, may distort the measurement of preferences. In addition, respondents may 

deliberately give biased responses in the hope of affecting the outcome of the analysis.  

 Bates (1988) indicates that “If we now assume that the distribution of error 

appropriate to estimation applies to forecasting, we will be making estimates of the 

‘pseudo’ utility rather than of the ‘true’ utility: in other words, we are making estimates of 

relative preferences as expressed in a stated preference experiment rather than of what 

would occur in the market.” 

 Bates also thinks that “the simplest case is when ε, which we are using to relate to 

the kind of error which is compatible with models fitted to RP data, and η,  which relates 

to the inability of the respondent to reply to the SP exercise in a way which corresponds 

with his actual behavior, are independently distributed with the same type of distribution, 

and differ only in their variances. Suppose the variance are σε and ση, respectively.”  

 Morikava (1994) presents an approach to estimate the bias effect of a SP data. He 

assumes that both revealed and stated preferences can be modeled by random utility 

models with discrete choices such as the Conditional Logit Model. Then the utility 

functions and choice probabilities are given as follows: 

 RP model:                        U Vni
RP

ni
RP

ni
RP= +ε    

     P V

V
n
RP ni

RP

nj
RP

j

J=

=
∑

exp( )

exp( )
1

                                                 (2.16) 

 SP model:                        U Vni
SP

ni
SP

ni
SP= +ε    

     P V

V
n
SP ni

SP

nj
SP

j

J=

=
∑

exp( )

exp( )
1

                           (2.17) 



where, all terms are same as before, and super-index RP and SP refer to RP and SP 

models, respectively. One fundamental assumption is that the trade-off relationship 

among major attributes is common to both RP and SP models. After introducing a scale 

factor ratio λ that represents the ratio of standard deviations of εni
RP and εni

SP,  

   Var Varni
RP

ni
SP( ) ( )ε λ ε= 2          (2.18) 

 and, assume  εni
RP and εni

SP have IID property, Equation (2.17) can be written as: 

   P V
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n
SP ni

SP

nj
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⋅

⋅
=
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exp( )

exp( )

λ

λ
1

         (2.19) 

 Note that scale factor ratio λ in Equation (2.19) is different from scale factor µni  

in Equation (2.8). The former is the ratio of variance of  SP and RP data, and the latter is 

the scale factor in random term distribution.   

 Now, we can use  both RP and SP data to jointly estimate scale factor ratio λ. The 

approaches can be found in some relative literature (Adamowicz, Louviere, and Williams, 

1994):  

1) separate estimation of both RP and SP models. Then, concatenate both data 

sets after re-scale SP data relative to RP data and conduct a joint estimation. 

2) compare the joint likelihood to the sum of the separate likelihoods for SP and 

RP models. Accept the null hypothesis that the re-scaled parameters are 

identical if the joint and summed separate likelihoods do not differ 

statistically. 

 In summary, stated preference data, combined with revealed preference data, can 

be used to increase the accuracy of parameter estimation.  

 

 



 

CHAPTER   3 

PROBLEM STATEMENT AND HYPOTHESIS 

Travel mode switching is defined as a particular kind of travel mode choice in Chapter 1, 

where an individual shifts his travel mode due to a change or changes in travel services, 

such as an increment in parking charge. An individual faces the option to either switch to 

alternative mode or stay with the current travel mode. The most meaningful 

characteristics of travel mode switching, comparing with some other travel mode choice 

issues such as travel mode choice for vacation, is that the decision maker has a current 

travel mode. The commuter needs to consider the benefit or the utility derived from the 

each alternative, as well as the feasibility of switching to another mode. 

 

 Can current travel mode choice theory and the Conditional Logit Model 

effectively be used to explain travel mode switching? As discussed in Chapter 2, 

consumer theory underlying the discrete choice models is based upon utility 

maximization. It is noteworthy that the arguments in the systematic utility term contain 

the resources consumed in travel through the various travel modes. The most meaningful 

examples of consumed resources are travel cost and travel time. Generally, the consumed 

resources are defined as the prices for consuming the corresponding travel mode.  As 

distinguished from the utility function with arguments of quantities of commodities used 

in classical economics, the utility function with arguments of prices is called indirect 

utility function (Ben-Akiva & Lerman, 1985). 

 The quantities of commodities in the direct utility function are commonly replaced 

by the prices of commodities and income.  The utility maximizing constraint function 

consists of: 



          F( q1k, p1k., q2k, p2k.. qik, pik ...) = Ck            ( k = 1,2,...K )             (3.1) 

where, qik  and  pik are the quantity and the kth price for commodity i, and Ck is total 

available amount for resource k.  Here, price pik is defined as the consumed kth resource 

on unit of commodity i.  

 Based upon the above analysis, total amount of resource Ck should be included 

into indirect utility function as a kind of constraint. Bates (1988) indicates the necessity of 

the inclusion of constraints into the indirect utility function, although he does not identify 

a theoretical model or an empirical model to test this supposition. He thinks that it is the 

kind of utility that is dealt with in discrete choice theory that causes the use of constraints 

in the models. Indirect utility in discrete choice models internalizes the constraints arising 

from income and other sources in the random utility term. 

 However, should the constraints be limited to the income and time only as in the 

classic economics? Kitamura (1990) suggests that the constraints that govern travel 

behavior are not limited to monetary and time budgets as in classical utility 

maximization. The constraints may also include spatial and temporal fixity constraints 

associated with the respective activities, interpersonal linkage constraints, and other types 

of constraints that portray the travel environment of each individual. 

 Harvey (1985) further suggests that research on constraints should be extended to 

other fields as well. He explains that activity participation may depend on cognitive 

capacity, time constraints, exogenously-imposed schedules, physical needs, income, 

endowment, technology, cumulative experience, authority, morality and desire or need. 

For example, the need for shopping on the way home.  

 Up to now, the necessity of the inclusion of constraints has been recognized 

theoretically. Whether these constraints should be explicitly taken into the systematic 

utility term due to their significantly effects on an individual’s mode switching behavior 

or they should be implicitly put into the random term still needs to be identified through 

an empirical study as well as a theoretical analysis.  



 As the hypothesis of this report, I propose that the existence of constraints in 

individuals’ mode switching has to be considered when we structure a theoretical model 

with an indirect utility function. Furthermore, constraints are supposed to significantly 

affect an individual’s travel mode switching; therefore, constraints can be measured by a 

discrete choice model which incorporates constraints in systematic utility term. Finally, 

the errors caused by ignoring the existence of constraints can be specified through the 

internal and external validity tests. In summary, the use of constraints in the analysis of 

individuals’ travel mode switching behavior will be very helpful for correcting the biases 

in assessing the travel service changes.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER  4 

METHODOLOGY 

This chapter presents the derivation of the theoretical model. This model replicates 

individuals’ travel mode switching behavior under the constraints. This chapter also 

introduces an approach for estimating the coefficients in the model. 

 

4.1   Formation of the Constrained Conditional Logit Model  

Travel shares the individuals various resources with all other activities. If an individual’s 

total activities are assumed arbitrarily as the combination of travel and other activities, the 

systematic utility Vn can be expressed for individual n by a function of consumed 

resources  xnrk  and  xnok (  k=1,2...K ) as : 

          V V x x x V x x xn nr nr nrk nrK no no nok noK= +( ... ... ) ( ... ... ), ,1 1  

where 

Vnr  -- systematic utility attained from travel r for individual n 

                Vno  -- systematic utility attained from other activities o for individual n 

  xnrk  – the resource k consumed by individual n in travel 

  xnok – the resource k  consumed by individual n in all other activities 

  K --  the total number of measurable attributes (resources) 

The all other factors affecting an individual’s decision for assigning his resources are 

included in the decision process by a random utility term εn. The total utility can be 

expressed as: 

U V x x x V x x xn nr nr nrk nrK no no nok noK n= + +( ... ... ) ( ... ... ), ,1 1 ε                      (4.1) 

 Comparing Equation (4.1) with the utility function used in the derivation of the 

Conditional Logit Model, the same place is that total utility is the sum of systematic 

utility Vn and random component εn. The different place is that the former’s systematic 

utility is the sum of travel systematic utility Vnr and other systematic utility Vno. 



 Based upon the assumptions made in Chapter 3, an individual myopically adjusts 

his current allocation of resources so as to obtain higher utility. But, instead of finding at 

once the best allocation of resources, utility increment maximization is used as the 

strategy to deal with the issue of travel mode switching. Therefore, an individual switches 

to the alternative which provides the maximum utility increment ∆Un. 

 Generally assume that individual n switches travel mode from current mode c to 

alternative i. The travel mode switching causes the attribute change of ∆xnrk for travel and 

∆xnok for all other activities( k=1,2...K ) simultaneously. The total utility increment ∆Un  

due to a travel mode switching can be written approximately as: 

                                        ∆ ∆ ∆ ∆U V Vn nr no n= + + ε                                                      (4.2) 

where ∆Vnr and ∆Vno  are the systematic utility increment from travel and all other 

activities due to travel mode switching. ∆εn  is the random component increment for 

individual n due to the mode switching.  

 The above equation explicitly shows that a travel mode switching is the result of a 

reallocation of the resources, including the systematic utility change of all other activities 

as well as the systematic utility change for travel. For instance, a saving of travel time 

will increase the time spent on some other activities, such as reading or shopping, then 

will increase the total utility as well. 

 As indicated by Ben-Akiva & Lerman(1985), the utility acquired from all other 

activities can be thought of a continuous function of attributes. The systematic utility 

increment ∆Vno  can be approximately expressed as:                      

                                        ∆ ∆V
V
x

xno
k

K
no

nok
nok≈

=
∑

1

∂
∂

                                                         (4.3) 

where,  
∂
∂

V
x

no

nok
 is the partial derivative of the utility function for all other activities with 

respect to attribute k. Consider the impossibility of attaining all information about 

individual’s all other consuming activities while studying individual travel mode 

switching behavior, the systematic utility increment may be conveniently expressed by a 



Taylor Series. The systematic utility increment ∆Vno  can be written as: (approximately by 

the first two terms) 
∂
∂

∂
∂

∂
∂
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V x x
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V x x
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0 0 0 0
                 (4.4) 

 The terms 
∂

∂
V x x

x
no noK

nok

( ( ),... ( ))1 0 0
and 

∂
∂

2
1

2

0 0V x x
x

no noK

nok

( ( ),... ( ))
 are the constants 

related only to different individual n and attribute k. The following substitutions are used 

in the above expressions (4.4): 

                    ϕ
∂

∂nk
no noK

nok

V x x
x

=
( ( ),... ( ))1 0 0

                     ( k=1,2...K)                  (4.5) 

and 

                     β
∂

∂nk
no noK

nok

V x x
x

=
2

1
2

0 0( ( ),... ( ))
                   ( k=1,2...K)                (4.6) 

Consider the systematic travel utility as a linear function as used in most of discrete 

choice models: 

                        V xnr nk nrk
k

K

=
=
∑α

1

                                                               (4.7) 

the systematic utility increment ∆Vnr  can be approximately expressed as: 

           ∆ ∆V xnr nk nrk
k

K

=
=
∑α

1

                  (4.8) 

Take Equation (4.3) and (4.8) into Equation (4.2) and replace ∆xnrk and ∆xnok  by dxnrk and 

dxnok , we obtain: 

                  ∆ ∆ ∆ ∆ ∆U x x xn nk
k

K

nrk nk
k

K

nok nk nok
k

K

n= + + +
= = =
∑ ∑ ∑α ϕ β ε

1 1 1

2( )                        (4.9) 

Note that attributes can be grouped into two sets by the constraint types, these with 

resource constraint and these without resource constraint. The typical examples for the 

former are time and cost. For the latter, on the other hand, are gender or attitude. Adjust 

the order of attributes in systematic utility function so that the constrained attributes are 

listed as k = 1, ... m, and the unconstrained attributes are k = m+1, ... K.  

Assume that constrained attributes subject to the following constraints: 



                                  x x cnrk nok nk+ =                      (k=1,2...m)                          (4.10) 

where cnk is the total available amount of resources k for individual n, such as budget or 

time limits. Differentiate function (4.10), the following equation can be derived,  

                                dxnrk + dxnok = 0                     (k=1,2...m)                           (4.11) 

Differentiation dxnrk and dxnok are assumed to be approximately equal to increment 

∆xnrk and ∆xnok, Equation (4.11) can be substituted by the following Equation (4.12): 

                               ∆xnrk =  - ∆xnok                        (k=1,2...m)                           (4.12) 

It is worthy to indicate that the attributes without constraints do not subject to Equation 

(4.12). The travel attribute change ∆xnrk will not company the attribute change ∆xnok. For 

example, the change of a traveler’s attitude for carpool will not definitely affect his 

attitude for pizza. Therefore, the allocation of attributes without constraints is assumed 

constant over the travel mode switching (∆xnok = 0, k = m+1... K).   

Substitute Equation (4.12) into Equation (4.9),  

                  ∆ ∆ ∆ ∆ ∆U x x xn nk
k

K

nrk nk nrk
k

m

nk nrk
k

m

n= − + +
= = =
∑ ∑ ∑α ϕ β ε

1 1 1

2( )                     (4.13) 

Combine the first two terms on the right side of Equation (4.13),  

                            ∆ ∆ ∆ ∆U x xn nk nrk
k

K

nk nrk
k
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= =
∑ ∑γ β ε
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1
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where 

                                         γ
α
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ϕ
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1

1
,...

, ...
                 

Through the substitutions above, sub-index o no longer appears. Therefore, from 

now the sub-index r will be omitted. All variables in equations are the attributes 

corresponding to travel unless where specific explanation is used.   

 Assume that individual n has a travel mode set with alternative i =1, 2 ... J,  the 

total utility increment corresponding to the mode switching from current travel mode c to 

an alternative i can be re-written as 

                      ∆ ∆ ∆ ∆U i x xn nk nik
k

K

nk nik
k

m

ni( ) = + +
= =
∑ ∑γ β ε

1

2

1

           ( i=1,2,... J )           (4.15) 



where, sub-index i is used to stands for a particular switching from c to i. For example,  

xnik in Equation (4.15) refers to the kth attribute corresponding to alternative i for 

individual n. The systematic utility which individual n attains from the current travel 

mode c is,  

                                    V c xn nk nck
k

K

( ) =
=
∑γ

1

                                                       (4.16) 

where  xnck  is the kth attribute for individual n from the current travel mode c. For 

individual n, Vn(i) is a constant for all switching alternatives. Consider the sum of the 

current systematic utility (4.16) and utility increment (4.2) as an approximate utility 

attained from alternative i,  A new equation for the utility due to the travel mode 

switching is formed as follows; 

                                U i V c U in n n nc( ) ( ) ( )= + +∆ ε  
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k

K

nk nck
k

K

nk nik
k

m

nix x x∆ ∆
1 1

2

1
         ( i=1,2...J )        (4.17) 

where, ε ni  is the sum of random utility increment ∆ε ni and εnc.  Note that :  

                                     ∆x x xnik nik nck= −                    (k=1,2...K)                          (4.18) 

and substitute Equation (4.18) into (4.17), we obtain 

                        U i x x xn nk nik
k

K

nk nik nck
k

m

ni( ) ( )= + − +
= =
∑ ∑γ β ε

1

2

1

                           (4.19) 

Since the difference between ∆U in ( )  and U in ( )  is a constant which is not related to 

alternative i,  maximizing U in ( )  will have same result as to maximize ∆U in ( ) . Now, 

travel mode switching process has been re-structured as the following maximization 

problem : 

   Max:   U i x x xn nk nik
k

K

nk nik nck
k

m

ni( ) ( )= + − +
= =
∑ ∑γ β ε

1

2

1

         

  (i ∈  travel Alternative J)                                            (4.20) 

where 

xnik  -- attribute k for alternative i  

xick  -- attribute k for current travel mode c  



ε ni  -- the random term  

γnk and βnk -- parameters 

Compare the above equation with maximization of travel utility in derivation for 

the Conditional Logit Model (assume systematic utility is linear function) : 

                     Max:   ∆U i xn nk nik
k

K

ni( ) = +
=
∑α ε

1
               (i=1,2...J)               (4.21)                

we can find that if we add maximization (4.21) with constraint condition 

                     Subject to: H x xnci nk nik nck
k

m

= −
=
∑β ( )2

1
=  0                                (4.22) 

the two maximization processes are identical. This is because constraint function Hnci is 

obtained as the inclusion of constraint conditions (4.10) into the total utility increment 

function. Now, make the following substitutions  
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k
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1
                                                               

and  
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k
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∑β ( )2

1
                                              (4.23) 

into Equation (4.19), and assume that random term ε ni is a Weibull distributed variable 

with the cumulative distribution function: 

     F ni n ni ni( ) exp{ exp[ ( )]}ε µ ε λ= − − −                                 (4.24) 

the probability for switching travel mode from current c to alternative i can be acquired 

by the method developed by MacFadden (see appendix A): 
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                     (4.25)  

where 



xnik -- attribute k for proposed alternative i for individual n 

xnck -- attribute k for current mode c for individual n 

γnk and βnk -- parameters for individual n 

µn --  Scaling factor for individual n 

If the parameters in the above equation is assumed as insensitive over individuals, 

sub-index n can be omitted from Equation (4.25) : 
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                              (4.26)         

where  

                       P(c,i) -- the probability for switching travel mode from current mode c to  

                                     proposed alternative i 

By the derivation process above, a modified discrete choice model -- the 

Constrained Conditional Logit Model (CCLM) is developed.  

 

4.2     Parameter Estimation 

The estimation is performed by Maximum Likelihood Method (MLE). Given that 

individual n has a  set of alternatives,  the probability he switches travel mode from 

current mode c to a particular alternative i is expressed as Equation (4.25). If  individuals’ 

switchings are observed and the event of switching from mode c to alternative i by 

individual n is recorded as Ynci = 1, the probability that all events happen is expressed as : 
                                          P c in

Ynci

cin
( , )∏∏∏                                                         (4.27) 

The likelihood function, therefore,  is : 
                                   Λ = =∏∏∏ ∑∑∑Ln P c i Y LnP c in

cin

Y
nci n

cin

nci( , ) ( , )                (4.28) 



Assume the parameter γnk and βnk in Equation (4.25) are all insensitive over individuals. 

To estimate the parameters, the following equations are required while maximizing 

Equation (4.28): 
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and 
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Take Equation (4.25) into the above equations : 
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Take Equation (4.31) and (4.32) into Equation (4.29) and (4.30) : 
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Take substitution (4.35): 

                                        h x xncik nik nck= −( )2                              (k=1,2...K)         (4.35)           



into Equation (4.34), we can obtain : 
                       ( ( , ) )P c i h Y hn ncik nci ncik

cin
− =∑∑∑ 0         (k=1,2,,, K)                 (4.36)          

Take Equation (4.25) into Equations (4.33) and (4.36), we can compute the 

estimates for parameters γk and βk ( k=1,2,,, K ). Since Equation (4.33) and (4.36) are 

implicit functions of  γk and βk., estimates for parameters γk and βk can only be obtained 

by the trial and error method as the products with scale factor µn, that is, the coefficients 

for parameters γk and βk. 

 By the similar method developed by McFadden (1974), the maximum likelihood 

coefficient estimates for γk and βk can be identified as consistent, asymptotically normal 

and asymptotically efficient.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER  5 

INTERNAL VALIDITY OF THE MODEL STRUCTURE 

Although an extended structure model, the Constrained Conditional Logit Model, is 

derived, does this model make a difference from the Conditional Logit Model on the 

replication of actual travel mode switching? Whether can maximum likelihood algorithm 

recover the estimates that are significantly different from their parameters? An internal 

validity is conducted in this chapter by a Monte Carlo simulation to answer these 

questions, and to determine the impact of assuming a Conditional Logit Model where the 

actual model should be the Constrained Conditional Logit Model. 

 

5.1  Data Generation 

The first issue for the simulation is to determine the structure of systematic utility 

function. For the sake of convenience, the attainment from 1968 survey in the 

Washington, D. C., metropolitan area is used (Ben-Akiva & Lerman 1985).  There are 

three travel modes in that survey, drive alone, transit bus and share carpool. The mode 

splits for the three travel modes are 57%, 16%  and 27%, respectively. Three attributes 

included in the systematic utility function are travel time, travel cost and out-vehicle time. 

The average values for these attributes are presented in Table 5.1. 

The next issue is data generation. For each observation, travel time for a particular 

travel mode is generated as an independent normal distributed variable. The average 

travel times for the three travel modes are 26.7, 56.5 and 36.7 as listed in Table 5.1. The 

standard deviation is 5.0. 
           Table 5.1   Average attribute value 

                            Travel Time        Travel Cost        Out-Vehicle Time       
                     (min)                  (cents)                   (min)       

     Auto                          26.7                      88.5                       5.4                  
     Bus                            56.5                      47.1                     18.6                 



     Carpool                     36.7                      35.4                     10.4               

          Data obtained from 1968 survey in the Washington, D. C., metropolitan area 

 

 Travel costs are generated as three dependent variables on the travel times by the 

following equation : 

          Travel cost = (Travel time × unit cost) + Normal distributed variable(0, 5.0)   (5.1) 

where, the unit cost for the three travel modes are 6.15, 1.24 and 1.35 $/min, respectively.  

 Out-vehicle times are generated as three independent normal distributed variables 

with average times of 5.4, 18.6 and 10.4. The standard deviation is 1.0.  

 The random utility term is a Weibell distributed variable with standard deviation 

of 1.28. The distribution function of random variable εni  is : 

   F ni n ni( ) exp[ exp( )]ε µ ε= − −                                                (5.2) 

where, µn is a scale factor defined as the function of variance σni by Equation (2.7) in 

Chapter 2 (assume that µni and σni are insensitive over individuals). 

    µ π σn n
2 2 26= / ( )  

 In order to generate records for individual travel mode choices, the parameters for 

the corresponding attributes have to be pre-determined. Table 5.2 presents the pre-

determined values for the parameters:  

 
      Table 5.2    Predetermined parameter value  

Parameters   γ1 γ2    γ3 β1 β2    β3 

True Value  -0.0389 -0.00725   -0.0121   -0.0054 -0.00012 -0.0112 

 

 In Table 5.2, γ1 , γ2 and γ3 are the parameters for travel alternative specific 

attributes,  travel time, travel cost and out-vehicle time and,  β1 , β2 and β3  are the 

parameters for the constraint variables imposed on the three travel alternative specific 

attributes.  



 

5.2   Simulation Method 

 The performance of the Constrained Conditional Logit Model on replicating 

travelers’ behavior is examined through the travel mode switching due to the designed 

travel service change. In the simulation,  travel cost for driving alone is supposed to rise 

50 cents for each observations. The all other attributes remain as the original ones. 

Traveler’s mode switching due to the rising of travel cost is embodied by the Constrained 

Conditional Logit Model. The simulation is conducted by the following steps : 

1) generate the travel specific alternative attributes by the approach described in 

the previous section, 

2) compute the systematic utility terms and the random utility terms for the three 

alternatives, 

3) choose the alternative with the largest sum of the systematic and random 

utility as the current travel mode c for observation  i,  

4) compute the proposed travel specific alternative attributes according to the 

proposed travel cost rising, 

5) compute the constraint functions for each switching alternative, 

6) generate a Weibull random variable for each switching alternative, 

7) compute the sum of systematic utility and random utility as the total utility for 

each switching alternative, and 

8) choose the alternative with the largest total utility under the corresponding 

constraint condition as the switching choice  i. 

 

5.3   Simulation Result 

 The number of observations in the simulation is 200. Based on the switching 

database generated by the way described above, the coefficients are estimated by ALOGIT 



software. The control file is attached in Appendix B of this dissertation. The estimation 

result by the Constrained Conditional Logit Mode is listed in Table 5.3.  
  Table 5.3     Estimation by the CCLM model 

Attribute 
Number 

         Attribute Name Coefficient 
  Estimate 

  Asymptotic 
Standard Error 

 t Test 
Statistic 

1  
2 
3 
4 
5 
6 
 

Travel Time  
Travel cost 
Out-Vehicle Time 
Travel Time Constraint. 
Travel Cost Constraint. 
Out-Vehicle Time Constraint 

-0.04483 
-0.01123 
-0.00691 
-0.00689 
-0.00014 
-0.01245 

0.03620 
0.00284 
0.08490 
0.00141 
0.000036 
0.00696 

-1.2 
-4.0 
-0.1 
-4.9 
-3.9 
-1.8 

  α(0) = -219.7225 
  α(βc) = -90.6071 
  ρ2 = 0.5876 
 ρ2 = 0.5163 
 

    

 

 

 The result shows that the null hypothesis of the parameter of Out-Vehicle Time 

can not be rejected even at a 0.10 level of significance. ( t = 1.65).  

 The same database is used for the estimation by the Conditional Logit Model. 

Table 5.4 presents the estimation result: 

  
 Table 5.4   Estimation by the CLM model 

Attribute 
Number 

Attribute Name Coefficient 
Estimate 

Asymptotic 
Standard Error 

t Test  
Statistic 

1  
2 
3 
 

Travel Time  
Travel cost 

Out-Vehicle Time 

-0.05815 
-0.01183 
-0.00244 

0.0251 
0.0018 
0.0548 

-2.3 
-6.5 

-0.04 

  α(0) = -219.7225 
  α(βl) = -189.5214 
  ρ2 = 0.1375 
 ρ2 = 0.0117 
 

    



 

 

 The χ2 test is used to examine the internal validity of the Constrained Conditional 

Logit Model. The test is performed by examining the null difference hypothesis between 

the estimated Constrained Conditional Logit Model and the estimated Conditional Logit 

Model under the situation where constraints exist in individuals’ travel model switchings. 

The χ2 test statistic L is computed by the following equation: 

 

                  L = -2 [α(βl) - α(βc)]  

     = -2 [-189.5214 + 90.6071 ]  

     = 197.8286 

where α(βl) and α(βc) are the likelihood values obtained for the Conditional Logit Model 

and the Constrained Conditional Logit Model as shown in Table 5.3 and Table 5.4. 

 The computation result shows that the null difference hypothesis for the two 

models can not be accepted even at a 0.05 level of significance as the critical value for a 

χ2 distributed variable at three degree of freedom is 7.815.(χ20.1(3) =7.815 ). Three 

constraint variables used in the constraint function is the sake of three degree of freedom. 

The parameter estimates obtained for the Conditional Logit Model in Table 5.4 

are identified as significantly different from the pre-determined parameter values as well 

as the parameter estimates for the Constrained Conditional Logit Model listed in Table 3. 

In other words, if the Constrained Conditional Logit Model can capture the effects of 

constraints while these constraints do exist in individuals mode switching, the 

Conditional Logit Model will lost accurate estimates for these parameters.  

 Also, null hypothesis of the parameters for the corresponding constraint variables 

is rejected by a  t  test at a 0.10 level of significance ( t0.1 = 1.65 ) for the three parameters 

and at a 0.05 level of significance for  β1 and β2. (t0.1 = 1.96) 



 The same conclusion can also be attained from the comparison of goodness-of-fit 

measures. Let us examine the likelihood ratio index (rho-squared bar) for both models. 

The entry of constraint attributes (hci1 , hci2 and hci3) causes index’s rising from 0.0117 to 

0.5163. Therefore, entry of constraints appears capable of increasing sufficient 

explanation power to individuals mode switching behavior if constraints do exist. 

 Finally, Table 5 presents a summary for the pre-determined parameters, the 

estimates for the Conditional Logit Model, and the estimates for the Constrained 

Conditional Logit Model for the sake of easy comparison. 

 
    Table 5.5   Summary of parameter and estimate 
   

Parameters   γ1 γ2    γ3 β1 β2    β3 

Real Value 

CLM Model 

CCLM Model 

-0.03890 

-0.05815 

-0.04483 

-0.00725 

-0.01183 

-0.01123   

-0.01210 

-0.00244 

-0.00691 

-0.00540 

 

-0.00689 

-0.00012 

 

-0.00014 

-0.01120 

 

-0.01245 

 

 

 

 
 

 

 

 

 

 

 



CHAPTER  6 

SURVEY AND DATA COLLECTION 

Through the simulation performed in Chapter 5, the validity of the Constrained 

Conditional Logit Model has been identified theoretically. This model can effectively 

replicate the effects of constraints on individuals’ travel mode switching. However, an 

empirical study is still necessary for supporting this conclusion. 

 This chapter introduces the surveys conducted on the two sites in 1995. Each 

survey collects the travelers’ current travel situation, travel mode usage and their 

preferences toward various scenarios of travel services.  

 

6.1  Introduction of Survey Site 

During the year 1995, the surveys of commuters at two employment sites were conducted 

in downtown of Newark, New Jersey. The respondents were the employees of the Mutual 

Benefit Life Corporation’s (MBL) headquarters building on Broad Street, and the 

Prudential Insurance Corporation’s Washington Plaza Building (WP).  

 According to two independent Employee Transportation Surveys administered in 

compliance with the U.S. Clean Air Act Amendments of 1991, as of September 26, 1994, 

total 893 employees of MBL Corporation worked in the MBL building everyday. Seven 

hundred and fifty six parking spaces were available in MBL building at a parking charge 

of 3.00 dollar per day.  In addition, some street parking was available within three blocks. 

Bus stops were located within one block or approximately 50 yards of the building’s 

entrance.  During the morning commute, seven bus lines served the MBL building with 

headways of less than 15 minutes, and additional four lines have headways between 16-

30 minutes. Two commuter railway stations and two subway stations are located within 

walking distance. According to the survey of 1994, travel modes used by the MBL 



employees can be categorized into drive alone, carpool/vanpool and public transport (bus, 

subway and rail). About 60.5% of total employees drive alone to work. The market shares 

of carpool and public transport are approximately 14.5% and 25%, respectively. The 

average one-way commute distance for the all employees in MBL building is 18 miles. 

 The employees’ commute travel to the Prudential - Washington Plaza Building 

(WP) is similar with that to MBL. The survey of September 26, 1994 shows that there are 

893 employees working at the WP site on a daily bases, and 902 parking spaces are  

provided to the Prudential employees without parking fee. Also, additional 296 off-site 

parking spaces within a distance of three blocks are leased for the WP employees. Three 

bus lines serve the site with 15 minute morning headways, two lines have 30 minute 

headways, and one with more than 30 minute headways. Subway and commuter rail 

service are available within a three block or 10 minute walking distance. The 1994 survey 

also shows that the market shares of travel alone, carpool or vanpool, and public transport 

are 63.2%, 13.1% and 23.2%, respectively. The average one-way commute distance for 

the all employees in WP building is 19.06 miles. Figure 6.1 presents the travel distance 

distributions for the two sites. 
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   Figure  6.1   Distribution of travel distance 

 



 The 1994 surveys also supply the distributions of employee’s home location. The 

following Table 6.1 gives the 10 most common home zip codes for the both sites.  
 

Table 6.1    Most common home zip code and percentage 

Rank The MBL Site 
Home Zip      Percentage 

The WP Site 
Home Zip      Percentage 

 
1 

 
07111              4.40% 

 
07111            3.00% 

2 07032              4.00% 07083            2.00% 
3 07109              3.80% 07032            1.80% 
4 07003              3.10% 07003            1.60% 
5 07029              2.10% 07052            1.40% 
6 07108              2.00% 07205            1.40% 
7 07104              2.00% 07109            1.40% 
8 07050              1.80% 07040            1.30% 
9 07103              1.70% 07018            1.30% 
10 
 

07106              1.70% 07110            1.30% 

 

 The surveys also provide the job classification for the employees on the two sites 

because this factor has been identified by some empirical studies as closely related to 

travel mode choice. Table 6.2 presents the job category. 
        
          Table 6.2   Job category 

Job category. The MBL Site The WP Site 

 
   Clerical/Secretarial 

 
21% 

 
27%            

   Technical 6% 4% 
   Administrator/Manager 25% 20% 
   Sales/Associate 2% 1% 
   Service/Maintenance 3% 1% 
   Skilled Craft 1% 0% 
   Professional 36% 39% 
   Laborer 0% 1% 
   Others 
 

6% 7% 

 



 

6.2   Survey Instrument 

The Constrained Conditional Logit Model is calibrated to a particular set of 

alternatives by the data obtained from the survey instrument. The survey instrument 

consists of two sections:  

a) the respondent’s socioeconomic characteristics and current travel situation, 

and  

b) the scenarios of proposed travel alternatives and the respondent’s choices. 

 First, the respondents are requested to report their current travel situation by 

answering a set of questions. These questions can be categorized into: 

1) the questions about the respondent’s current travel modes and associated 

attributes, such as current travel mode available to the respondent, his current 

using travel mode and associated travel time, cost, access time and access 

approach. The respondents are encouraged to report the information about the 

other travel mode’s attributes values,  

2) respondent’s preferences to the existed and proposed travel modes,  such as 

the attitude to the existed travel modes, and comfort and safety appraisement 

for each travel mode. Each of the preferential questions consist of some level 

semantic scales, from extremely pleased to extremely unpleased. 

3) traveler’s personal information related to the travel mode choice, such as  

traveler’s family size, income, age, gender and job classification. Some of the 

questions in this section are presented as a category formation. For instance, 

the income of the respondent consists of five levels with the equal interval of 

$25,000. 

The commute mode choice scenarios were presented to the respondents with three 

commute alternatives: single occupant vehicle (SOV), carpool (CP) and public transport 

(PT).  A total of 18 scenarios were designed for the respondents from both sites. Each 



scenario provides respondents with a set of attribute values for the each alternative. 

Appendix C presents an example of scenarios. Table 6.3 presents the brief introduction of 

these attributes and their value ranges: 

  
      Table 6.3  Alternatives and associated attributes 

             ALTERNATIVES                                              ATTRIBUTES 
 
Alternative 1,  Single Occupant Vehicle 
 
  Cost of tolls and gas per day 

  Parking space charge per day 

 
 
 
Current costs 

$0.00, $3.00, $5.00 

 

Alternative 2,  Carpool 
  Carpool costs per person per day 
  Parking space charge per day 
  Pick up location 
  Extra time required for carpooling 

  Guaranteed rider home 

 

 
1/2 drive alone cost 
1/2 drive alone parking space charge 
Home, parking lot, shopping center 
10 min, 20 min, 30 min 

15 min waiting, 35 min waiting, none 

 

Alternative 3,  Public Transit 
  Transit fare per day 
  Number of transfers 
  Extra time required for transit 
  Guaranteed rider home 

  Transit subsidy paid to you per day 

 

 
Current value 
Current number 
15 min, 25 min, 45 min 
15 min waiting, 35 min waiting, none 

None, $3.00, $5.00 

 

 

The sequence of 18 scenarios were randomly ordered and administered to 

respondents. The respondents are asked to choose just one travel mode according to their 

tastes or preferences. Respondents were selected through the volunteer process. The 

employee transportation coordinator of each firm asked for volunteers from the 

permanent employees working at the site. The survey questionnaires were delivered to the 



volunteer by corporate mails and total 74 respondents from MBL and 85 from WP 

returned the questionnaires. Each respondent completed 18 choice tasks or observations. 

Respondents failing to answer the questions about their current commute mode were 

excluded from the following data analysis. The final data set contains 646 and 898 

observations in MBL and WP data set, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER  7 

ESTIMATION AND TEST OF HYPOTHESIS 

In this chapter, empirical evidence is used to test the hypothesis proposed in Chapter 3, 

that is,  constraints should be explicitly included in decision makers’ indirect utility 

functions. The hypothesis tests are conducted through the following steps: 

1) The coefficients in systematic utility function are estimated by the Conditional 

Logit Model and the Constrained Conditional Logit Model. This process is 

conducted by ALOGIT software for MBL data and WP data separately. 

2) A χ2 test is performed for the null structural difference hypothesis and a  t  test 

is performed to test the null coefficient hypothesis for each constraint variable. 

3) the two data sets are pooled and tested for a common underlying structural 

model.  

 

7.1    Coefficient Estimation 

Data matrix [Xik] was formed after a pre-analysis of  MBL and WP survey data in 

accordance to the Constrained Conditional Logit Model. The sub-index n in Equation 

(4.25) is omitted since the coefficients in the empirical model are assumed to be in-

sensitive to the different individuals in the samples. 

P(c,i) =  
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µ µ

µ µ
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Sub-index  i  stands for the ith observation and k refers to the kth element in the data set. 

Each observation consists of  23 elements shown as Table 7.1. 
 
           Table 7.1   Element in each observation 

   Element No.              Variable 

 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

 
individual choice 
travel time for SOV,  x11 
travel cost for SOV,  x12 
access time for SOV,  x13 
travel time for CP,  x21 
travel cost for CP,  x22 
access time for CP,  x23 
travel time for PT,  x31 
travel cost for PT,  x32 
access time for PT,  x33 
attitude for SOV,  x14 
attitude for CP,  x25 
attitude for PT,  x36 
traveler’s age,  x17 
traveler’s family size,  x18 
traveler’s gender,  x19 
traveler’s annual income,  x10 
designed travel time change for SOV,  hc11 
designed travel cost change for SOV,  hc12  
designed travel time change for CP,  hc21 
designed travel cost change for CP,  hc22 
designed travel time change for PT,  hc31 
designed travel cost change for PT,  hc32 
 

    

 

 Equation (7.2) shows the systematic utility term including its elements and 

associated parameters.  
 ( ) ( ) [ ]( )V Xi i ik k= +α γ   ( i = 1, 2, 3 )                    (7.2) 

 



where, the vector (Vi ) refers to the systematic utility derived from each commute 

alternative: single occupant vehicle (SOV), carpool (CP) or public transit (PT), 

respectively. The elements in the parameter vector (γ k) are presented in Table 7.2. 

 
         Table 7.2   Parameter in systematic utility function 

Number  The attribute which parameter is corresponding to  

 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

 

 
   travel time (generic) 
   travel cost (generic) 
   access time (generic) 
   attitude for SOV 
   attitude for CP 
   attitude for PT 
   traveler’s age for SOV 
   traveler’s family size for SOV  
   traveler’s gender for SOV 
   traveler’s income for SOV 

 

 

The parameter vector (αi ) stands for the alternative specific constant for the 

alternatives: SOV and CP. The design travel scenarios are mainly constructed in term of 

changes in travel time and travel cost, therefore, the variables in constraint term Hci are 

designed to correspond the constraints on travel time and travel cost. The constraint 

function Hci is formed in the form of Equation (7.3):   

   
H
H
H

h h
h h
h h

c

c

c

c c

c c

c c

1

2

3

11 12

21 22

31 22

1

2
















=


























β
β                                                           (7.3) 

 

where, β1 and β2 are the parameters corresponding to the two arguments in the constraint 

function. Appendix D presents the control files used in ALOGIT software. Table 7.3 and 



7.4 present the Constrained Conditional Logit Model estimation results for the MBL and 

the WP sites,  respectively. 
 
  Table 7.3    CCLM model estimation for the MBL site  

Attribute 
number 

Attribute Name Coefficient 
estimate 

Asymptotic 
Standard Error 

     t 
Statistic 

  
 1  
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 

 
Constant of SOV 
Constant of CP 
Travel Time (generic) 
Travel cost (generic) 
Access Time (generic) 
Attitude to SOV 
Attitude to CP  
Attitude to PT 
Age to SOV 
Family Size to SOV 
Gender to SOV 
Income to SOV 
Constraint on Travel Time(generic) 
Constraint on Travel Cost(generic) 
 

  
-1.574       
.5770      
-.1819E-01  
-.2179      
-.9164E-02   
 .3200 
 .3470       
 .5547       
 .4110E-01 
 .8326E-01 
-.2226 
 .9286E-01  
-.6632E-03   
 .2371E-02 

 
.562        
.784        
.947E-02    
.568E-01    
.138E-01    
.585E-01 
.713E-01    
.738E-01    
.127E-01 
.393E-01 
.115 
.122 
.154E-03    
.479E-02 

  
-2.8         
 .7        
-1.9        
-3.8        
-.7         
 5.5 
 4.9        
 7.5         
 3.2  
 2.1        
-1.9 
   .8         
-4.3         
   .5        
 

  Likelihood with Zero α(0) = -709.7053 
  Final Likelihood αc(βm) = -555.8165 
  Rho-Squared with Zero ρ2 = 0.2168 
Rho-Squared with constant ρ2 = 0.2050 
 

    

 

 

  Table 7.4   CCLM model estimation for the WP site 

Attribute 
number 

Attribute Name Coefficient 
estimate 

Asymptotic 
Standard Error 

      t 
Statistic 



  
 1  
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
 

 
Constant of SOV 
Constant of CP 
Travel Time (generic) 
Travel cost (generic) 
Access Time (generic) 
Attitude to SOV 
Attitude to CP  
Attitude to PT 
Age to SOV 
Family Size to SOV 
Gender to SOV 
Income to SOV 
Constraint on Travel Time(generic) 
Constraint on Travel Cost(generic) 
 

 
1.468       
0.359      
-.1921E-01  
-.2509       
.1508E-02   
.2055 
.3572E-01   
.5497     
-.2001E02 
.6713E-01 
. 4391       
-.2219E-01  
-.4147E-03  
-.1941E-01 

 
.563        
.579E-01        
.630E-02    
.335E-01    
.708E-02    
.534E-01 
.509E-01    
.562E-01    
.835E-02 
.297E-01 
.109 
.675E-01 
.917E-04    
.506E-02 

 
 2.6         
 6.2        
-3.0        
-7.5         
 .2        
 3.8 
 .7         
 9.8        
-.2         
 2.3 
 4.0         
-.3          
-4.5        
-3.8 
 

  Likelihood with Zero α(0) = -986.5538 
  Final Likelihood αc(βw) = -807.8917 
  Rho-Squared with Zero ρ2 = 0.1811 
Rho-Squared with constant ρ2 = 0.1623 
  

    

 

 

 In Table 7.3 and 7.4, α(0) is the maximum likelihood value where all the 

parameters are zero, and αc(βm) and αc(βw)  are the maximum likelihood values for the 

final estimation results. ρ2 and ρ2 are the factors for the goodness-of-fit measure.  

 First, discuss the estimates associated with the travel specific attributes, travel 

time, travel cost and access time. Both Table 7.3 and 7.4 above show that the estimates 

corresponding to travel time and travel cost are negative as expected. However, the t  

statistic values for the estimates corresponding to access time are very small for the two 

sites. As the t statistic values are less than the critical value of 1.28 under significant level 

of 0.1, the access time effect on the individuals travel mode switching can be put into the 

random utility term. According to the analysis to the data, this is because that the quite 

more respondents in the two sites did not correctly answer the questions about their 

access time and approach, especially for the alternatives they did not use currently. The 



alternative specific constants for SOV are positive for both sites. The coefficient 

estimates for the attitudes are all positive as expected.  

  The traveler’s annual income has very weak effect and this effect is contradictory 

for the two sites (0.8 and -0.3 for MBL and WP, respectively). This result can be 

explained as the respondents’ reluctant to answer the question about their income, or 

deliberately supply the wrong answers.  
  

  Table 7.5    CLM model estimation for the MBL site 

Parameter Attribute Coefficient 
estimate 

Asymptotic 
Standard Error 

t Statistic 

  
 α1  
α2 
γ1 
γ2 
γ3 
γ4 
γ5 
γ6 
γ7 
γ8 
γ9 

      γ10 
 

 
Constant of SOV 
Constant of CP 
Travel Time  
Travel cost 
Access Time 
Attitude to SOV 
Attitude to CP  
Attitude to PT 
Age 
Family Size 
Gender 
Income 

 
-2.788      
.9085      
-.4618E-01  
-.2361      
-.4559E-02  
.3470  
.3171 
.5302      
.3823E-01   
.7370E-01   
-.2363       
.1442 

 
.863        
.732        
.683E-02   
.406E-01   
.125E-01   
.574E-01 
.701E-01   
.711E-01   
.126E-01     
.391E-01  
.114          
.120 

 
-3.2 
 1.2 
-6.8 
-5.8 
-0.4 
 6.0 
 4.5 
 7.5 
 3.0 
 1.9 
-2.1 
 1.2 

  α(0) = -709.7053 
  αl(βm) = -567.5669 
  ρ2 = 0.2003 
 ρ2 = 0.1881 
 

    

 

 It is noteworthy that the coefficient estimates for the constraint variables are 

negative. This result means that the existence of constraints encourages the traveler to 

stay or switch to an alternative with smaller attribute changes. 
 Table 7.5 and 7.6 present the estimation for the Conditional Logit Model using 
ALOGIT software for the two sites. The results show that the t statistic values 



corresponding to access time and traveler’s annual income are also less than the critical 
value of 1.28. 
 

  Table 7.6     CLM model estimation for the WP site 

Parameter Attribute  Coefficient 
estimate 

Asymptotic 
Standard Error 

t Statistic 

  
 α1  
α2 
γ1 
γ2 
γ3 
γ4 
γ5 
γ6 
γ7 
γ8 
γ9 

 γ10 
 

 
Constant of SOV 
Constant of CP 
Travel Time  
Travel cost 
Access Time 
Attitude to SOV 
Attitude to CP  
Attitude to PT 
Age 
Family Size 
Gender 
Income 

 
.6232       
2.877     
-.3397E-01  
-.1794      
-.2154E-02  
.2566 
.3194E-01  
.5165      
-.1256E-02 
.4787E-01  
.4524       
-.1565E-02 

 
.524       
.493       
.534E-02   
.252E-01   
.706E-02   
.530E-01  
.511E-01   
.534E-01   
.825E-02   
.285E-01  
.109  
.666E-01 

  
 1.2 
 5.8 
-6.4 
-7.1 
-0.3 
 4.8 
 4.6 
 9.7 
-0.2 
 1.7 
 4.2 
 0.0 

  α(0) = -986.5538 
  αl(βw) = -831.4445 
  ρ2 = 0.1572 
ρ 2 = 0.1378 
 

    

 
 
 

7.2   Hypothesis Testing 
  

The hypothesis that constraints will significantly affect the individuals travel mode 

switching behavior is tested by: 

a)  a χ2 test performed for examining the null difference hypothesis.  

The null difference hypothesis suggests that the Constrained Conditional Logit 

Model has same underlying structural parameters as the Conditional Logit Model. In 



other words, the coefficients are not significantly different statistically for the two 

models.  

 αl(βm) and αl(βw) in Table 7.5 and 7.6 are the likelihood values obtained by the 

Conditional Logit Model, and αc(βm) and αc(βw) in Table 7.3 and 7.4 are by the 

Constrained Conditional Logit Model.  The χ2 test statistic λ  for the MBL site and the 

WP site is computed as: 

λm= -2 (αl(βm) - αc(βm) )      

or                                                                

λw= -2 (αl(βw) - αc(βw) )                                                   (7.4) 

 If either  χ2 test statistic: λm or λw, is larger than the critical value χ2
s(n), the null 

hypothesis will be rejected. Sub-index s stands for significant level and n refers to degree 

of freedom. The alternative hypothesis that the two models are significantly different 

from each other will be accepted. 

 The χ2 test statistic λm for MBL data is computed as: 

  λm = -2 (-567.5669+555.8165) = 23.5008  

 As the critical value under the significance level of 0.05 with two freedom ( two 

freedom is the result of two new parameters)  is 5.991, the null difference hypothesis of 

structural parameters for the two models is rejected for MBL sample. This means that the 

equation estimated by the Constrained Conditional Logit Models are significantly 

different from the equation estimated by the Conditional Logit Model. 

 By the same way as the above, the null difference hypothesis of the structural 

parameter estimates is rejected for WP sample as well as MBL sample. The χ2 test 

statistic λw is computed: 

         λw = -2 (-831.4445+807.8917) = 47.1056 

b)  a t test performed for the null hypothesis of each coefficient in constraint 

function if the null hypothesis in χ2 test is rejected.  



This test is to examine which constraint’s effect is significant statistically. If the 

null hypothesis for a particular coefficient is rejected, we accept the alternative hypothesis 

that  this constraint exists in the travel mode switching behavior. 

 The null hypothesis of constraint coefficients is rejected as the t statistics for 

coefficients 13 and 14 in Table 7.3 and 7.4 are both larger than the critical value of 1.28 

under the significant level of 0.1.  This result shows that the constraints on the travel time 

and travel cost both exist. 

 In summary, through the tests performed by the two data sets, a conclusion is 

reached. As expected, constraints exist and affect individuals’ travel mode switching. 

 

 

7.3   Joint Data Estimation and Sample Identity Testing 

The 1994 surveys for the MBL and WP sites show that the individuals of the two sites 

have similar geographic and sociological characteristics as well as the actual commute 

mode alternatives. On the surface, the two experiment sites appear identical for all other 

travel attributes with the exception of a difference in parking charge. Both sites hold 

financial service headquarters. Both sites are in the CBD of the same city. Both are 

located near the same transportation centers. However, whether these two data can be 

accepted as the two samples drawn from the same population is still needed to be 

examined statistically.  

On the view of discrete mode choice model, two samples drawn from the same 

population should statistically have the same parameters for the systematic utility 

components and same random utility distribution. As the estimation of the model supplies 

the coefficient estimates, the discussion should be start from the identity of coefficients.  

 The discussion in Chapter 2 shows that the calibrated coefficient τn  is the product 

of parameter vector γn corresponding to the attributes in the systematic utility function 



and the scale factor µn  which is related to the variance of the random utility term. Sub-

index n (1 or 2) here stands for the different sample; the MBL or the WP sample.  

           µn × γn  = τn                                                             (7.5) 

The sufficient condition for the equivalence of coefficients for the two samples: τ1 =  τ2,, 

is that µ1 equals to µ2  and  γ1 equals to γ2. However, this does not mean that different 

coefficients: τ1 ≠ τ2 , will definitely result in different parameters: γ1 ≠ γ2  and different 

scale factors: µ1 ≠µ2.  

Assume the variances of the two samples in this study are σ1
2 for the MBL and σ

2
2 for the WP and they can be expressed as: 

                σ1
2 = ζ2 σ2

2                                                          (7.6) 

where λ  is a factor called the scale factor ratio. Now, the requirement for the identity of 

scale factors is transferred to be ζ = 1. Therefore, we obtain: 

    µ1 = ζ µ2                                                              (7.7) 

where sub-index 1 and 2 refer to the sample 1 and sample 2. Providing that the scale 

factor µ1 of sample 1 is arbitrary assumed as 1.0, we can calculate the scale factor µ2  and 

ζ  according to the coefficients τ1 and τ2  if the parameters are identical for the two 

samples. The important point is to test if the two samples have same parameters. 

The test for the hypothesis of the two samples identical is performed by two sub-

test as follows:  

a) test the null difference hypothesis for the two sample’s parameters, and  

b) test the null difference hypothesis for the two samples scale factors, that is, 

scale factor ratio is 1.0 while the parameters of the two samples are equal.   

 A approach which was designed to test the identity of stated preference (SP) and 

revealed preference (RP) data is used in this report (Swait & Louviere, 1993). The key 

point of the test for hypothesis (a) above is to find the scale factor ratio by a grid search. 

The grid search is conducted in the following few steps: 

1) compute separately the coefficients τ1 and τ2  for the two samples, 



2) set a  reasonable range for the scale factor ratio λ, and determine a unified 

interval to obtain a set of trail scale factor λ(l) . Parameter λ(l) stands for the 

different trail value for λ,  

3) concatenate both data sets as a joint data set [Xik(m) λ(l)Xik(w)]T with a trial 

scale factor ratio λ(l) . Xik(m) and Xik(w) for the data matrix for MBL sample 

and the WP sample. 

4) estimate coefficients using the joint data set with different scale factor ratio λ
(l), and  

5) repeat step 3) and 4) until a maximum likelihood value is achieved. 

The λ(l) corresponding to the maximum likelihood value is the scale factor ratio estimate. 

After the estimate and its corresponding likelihood are computed, the test for parameter 

equality is executed by comparing the likelihood for the joint data set with the sum of the 

separate likelihoods for the two samples. Accept the null hypothesis that both samples 

have the same parameters in the systematic utility function if the joint and summed 

separate likelihoods are not significantly different.  

If the above null hypothesis is accepted, compare the maximum joint likelihood to 

the joint likelihood with scale factor ratio of 1.0, and accept hypothesis (b) if the 

maximum joint likelihood and  likelihood with 1.0 of scale factor ratio are not different 

statistically.  

 The separate estimations for the two samples have been finished in section 7.1 and 

the coefficient estimates are listed in Table 7.3 and 7.4. Therefore, grid search was 

performed by a series of joint estimations with different scale factor ratios using ALOGIT 

program. The control file for the joint estimation is attached in Appendix E of this report. 

The WP data matrix was multiplied by a particular scale factor ratio λ i and concatenated 

with MBL data matrix to form a joint data matrix. The grid search result is presented by 

Figure 7.1. 
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                        Figure 7.1:    Grid search of scale factor ratio  

  

   The likelihood value αc(βp ) corresponding to the scale factor ratio of 1.0 is -

1374.0999; the estimation model for this value is not shown. The maximum likelihood 

value αc(βµ ) found by the grid search is -1370.5652 at the scale factor ratio of 1.3. Table 

7.7 presents the estimation result with the scale factor ratio of 1.3 using the Constrained 

Conditional Logit Model. 

The test for the parameter identity of the two samples is conducted based upon the 

separate estimations in Table 7.3 and 7.4 and the joint estimation in Table 7.7. The χ2 test 

statistic La) for hypothesis of parameter identity is computed as: 

Table 7.7    Joint estimation by the CCLM model 

Attribute 
number 

Attribute Name Coefficient 
estimate 

Asymptotic 
Standard Error 

t 
Statistic



  
 1  
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 

 
Constant of SOV for the MBL 
Constant of CP for the MBL 
Constant of SOV for the WP 
Constant of CP for the WP 
Travel Time (generic) 
Travel cost (generic) 
Access Time (generic) 
Attitude to SOV 
Attitude to CP  
Attitude to PT 
Age to SOV 
Family Size to SOV 
Gender to SOV 
Income to SOV 
Constraint on Travel Time(generic) 
Constraint on Travel Cost(generic) 
 

 
-2.203      
 1.028 
 1.581 
 3.193 
-.1715E-01  
-.2159       
-.1402E-02   
.3266 
.3258   
.5527     
.3925E-01 
.7972E-01 
-.2112       
.1180   
-.4961E-03  
-.5284E-02 

 
.812        
.709        
.543    
.503    
.478E-02    
.253E-01 
.601E-01    
.571E-01    
.701E-01 
.720E-01 
.126E-01 
.389E-01 
.114    
.120 
.719E-4 
.252E-2 

 
-2.7         
 1.4        
 2.9        
 6.4         
-3.6       
-8.5 
-0.2         
 5.7        
 4.7         
 7.7 
 3.1        
 2.0         
-1.9        
 1.0 
-6.9 
-2.1 
 

  Scale Factor Ratio λ = 1.3 
  Likelihood with Zero α(0) = -1696.2574 
  Final Likelihood αc(β) = -1370.5652 
  Rho-Squared with Zero ρ2 = 0.1920 
Rho-Squared with constant ρ2 = 0.1795 
 

   

 

 

              La) = -2 [αc(βµ ) - (αc(βm) +αc(βw))]  

      = -2(-1370.5652- (-555.8165-807.8917))  

      = 13.714 

   Critical Value with df=9 is 19.675. 

where, αc(βµ) is the maximum likelihood value of joint data estimation in Table 7.7, αc(β

m)  and αc(βw)  are the maximum likelihood values of the separate estimations for the 

MBL sample and the WP sample shown in Tables 7.3 and 7.4.. The critical value under 

the significance level of 0.05 with degree of freedom equal to 9 is 19.675. The degree of 

freedom number is K+1. where K is the number of common parameters in joint model as 

well as the separate models.  The null hypothesis states that the parameters underlying 

both models are identity.  



 The hypothesis of scale factor identity is tested by computing test statistic Lb) 

               Lb) = -2 [αc(βp ) - αc(βµ ) ]   

                     = -2(-1374.0999+1370.5652)  

                     = 7.0694 

    Critical value with df=1 is 3.841 

where, αc(βp ) is the likelihood value of joint data estimation with scale factor ratio of 1.0 

shown in Figure 1. The critical value under the significance level of 0.05 with degree of 

freedom of 1 is 3.841. (the one degree of freedom is the result of the restriction on the 

scale factor µ1 = µ2) 

 The two test results show that the parameters in the systematic utility functions are 

identical for the two samples, but the variances of random components and therefore the 

scaling factor are different. Finally, based on the joint estimation result in Table 7.7, the 

joint Constrained Conditional Logit Model was calibrated as follows: 
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where, E1 is 1 for MBL and 0 for WP individuals, and E2 is 0 for MBL and 1 for WP 

individuals. Parameter µn is 1 for MBL and 1.3 for WP individuals. The term (xik - xck) 

stands for the designed kth attribute change if commuter switches from current mode c to 

alternative i.    

 The coefficients in the constraint terms (Hci) are all negative in Equation (7.8). For 

example, the coefficient for travel time change term is -0.0005. This result shows that the 

constraints for travel time and cost tend to encourage individuals to remain in their 

current commute modes, instead of switching to an alternative. However, some variable’s 

contributions to the mode switching behavior, such as access time and income, are still 

vague in that their t statistic values are less than the critical value. Additional study on 

these variables is necessary. 

 

7.4    Discussion 

In summary, empirical evidence has identified the existence of the constrained resources, 

such as cost and time, on individual mode switching behavior. These constraints are 

identified to significantly affect individual mode switching behavior. Ignoring the effects 

of these constraints, when estimating the model, will cause biased coefficient estimates. 

The Constrained Conditional Logit Model can correct these biases and errors. 

 In addition, correcting the biases in the estimation of the coefficients makes the 

transferability of the empirical models possible. As the joint estimation improves the 

estimation efficiency as well as the accuracy of the estimates.  

 

 

 



CHAPTER  8  
    

EXTERNAL VALIDITY  AND  DISCUSSION 

 

Chapter 7 tests the Constrained Conditional Logit Model and presents evidence of its 

superior performance when compared to the Conditional Logit Model. However, the 

evidence is limited to construct validity tests and is therefore limited to a test of internal 

validity.  

         Forecast and policy models are prepared to predict states of systems after 

attributes have been changed. A model may succeed in demonstrating internal validity, 

but this does not guarantee high quality predictions. A useful model must also be 

examined for its external validity. According to Rosnow and Rosenthal (1996), external 

validity is a model's performance in predicting actual states of affairs. This chapter 

presents the methodology and the external validity test for carrying out the analysis. 

 

8.1   Ideal Experimental design for external validity test 

An external validity test of the CCLM model examines a model's ability to predict travel 

mode switching behavior associated with a designed change in travel conditions, such as 

a parking charge imposition. Ideally, an external validity test should be performed by 

measuring the difference between predicted travel mode switching and real mode 

switching following a change in a travel attribute identical to that specified in the 

forecasting model.  

One of the most important issue in external validity test is the experimental design 

for obtaining the actual mode switching data. A statistically appropriate number of 

individuals should be randomly selected from a target population, and the characteristics 

of their travel situations relative to the travel modes available, such as travel time, cost 

...etc., as well as their current choices of travel modes recorded. Then, by an equality 



principle these individuals should be randomly assigned to two different experimental 

conditions, the test condition and control condition. Individuals assigned to the control 

condition should face a set of unchanging travel conditions and, therefore, be called the 

control sub-sample. The individuals assigned to the test condition would have one 

attribute changed to test the effect of the attribute change on the mode switching.  

On the other hand, mode switching prediction should be made in corresponding to 

the difference between the control and test conditions identical with the experiment and 

be compared with the real outcome of the experiment. The comparison usually be 

conducted by a particular statistical approach. 

         Let us take an imposition of a parking charge as an example. The external validity 

test could include:   

1) randomly select a set of individuals and record their current travel modes and 

associated travel attributes for each travel alternative,  

2) randomly assign these individuals to either the control condition or to the test 

condition. The control condition maintains the individuals current travel 

conditions while, the test condition imposes a designed parking charge.  

3) observe and record the real mode choice for the two sub-samples before and 

after the designed parking charge is imposed. The market share differences 

between the two sub-samples are accepted as the effect of parking charge 

imposition after removal of confounding effects,  

4) predict travel mode switching behavior associated with the designed parking 

charge imposition identical with the experiment condition using the CCLM 

model,   

5) test the null difference hypothesis. The null hypothesis -- the mode split 

obtained by the forecast model is statistically identical to the mode split 

obtained under the real world conditions.  



If the null difference hypothesis is accepted, the hypothesis that the CCLM model 

prediction is identical to actual controlled switching behavior can not be rejected. In other 

word, the CCLM model is externally valid. 

 

8.2  Actual Experimental Design for External Validity Test 

An ideal external validity test is seldom supported by real world condition. The ideal 

experimental design is therefore necessarily modified to be practical for the 

circumstances surrounding actual research condition. The practical experimental design 

must incorporate cause and effect reasoning. This implies that the two phenomenon co-

vary, the cause precedes the effect and confounding factors are eliminated.  

 A longitudinal design conforms to at least one of the three criteria for cause and 

effect reasoning since this design can effectively guarantee the control sample and the test 

sample identical by observing the sample sample’s behavior before and after the test 

condition is executed. The data used in longitudinal design is called panel data as 

discussed in Chapter 2.  

However, panel data was not available in that the researchers had no opportunity 

to manipulate both test and control conditions in the actual experiment. Alternatively, two 

samples may be selected based on their location in a same central business district (CBD) 

and their operation in the same type of business to replace the panel data. This data is 

called cross-sectional data and a cross-sectional design is then developed in this situation 

to replace the longitudinal design. The principle and process of this design will be 

discussed in section 8.2.1. 

 Data was collected in this study for the external validity test as well as for both the 

CLM and the CCLM estimation of explanatory models. The CCLM explanatory model 

developed in Chapter 7 is used to produce a forecast of mode split change associated with 

a change in parking charge. To remove confounding effect in cross-sectional 



experimental design, all other variables (covariates) in the explanatory model are held 

unchanged in the forecast.  

In correspondence, a truth set was formed by combining the WP sample with 

adjusted covariates and the MBL sample for completing the external validity test. The 

confounding effect removal and relevant covariate adjustment will be discussed in detail 

in section 8.2.2. 

 The external validity test will be performed by generating a mode split forecast by 

the CCLM explanatory model. The forecast method for the external validity test will be 

discussed in section 8.2.3. Finally the difference between the forecast values and the truth 

set's mode split values will be tested using standard hypothesis testing procedures. 

 

8.2.1   Experiment samples 

 In this study, two employment sites, WP and MBL, were chosen in combination to 

reflect a natural experiment occurring on the sites. On the surface, the two experiment 

sites appeared identical for all other travel attributes with the exception of a difference in 

parking charge. Both sites hold financial service headquarters. Both sites are in the same 

CBD of a major city. Both are located near the same transportation center. The only 

significant difference was the parking condition facing the respective employees.  

         The natural experiment arose as a result of financial problems experienced by one 

of the experimental sites. The MBL headquarter site was the center of a bankruptcy action 

in 1991. This action forced the management to impose $3.00 parking charge on its 

employees who use its parking lot. In contrast, the Washington Plaza headquarter site of 

the Prudential Issuance Corporate has had fully subsidized parking for over two decades. 

The Washington Plaza headquarters site was selected as the control sites based on its 

$0.00 parking charge. In neither case was alternative parking a feasible option. 



 The validity of the selection of the two samples is supported in Chapter 7 by the 

finding that the two samples were drawn from a population reflecting the same 

underlying mode switching structural model.  

 

8.2.2   Confounding effect and truth set formation 

In the ideal world, the control sub-sample and the test sub-sample are formed through a 

random assignment of elements taken from a random sample derived from the target 

population. Random assignment guarantees that the two sub-samples have identical 

attribute distributions although the two sub-samples are made up of different individuals.  

 Theoretically, cross-sectional experimental designs should also meet the equal 

distribution requirement. In this study, equal attribute distribution requirements implies 

that the WP sample and MBL sample should have identical covariate distributions with 

the only exception of the parking charge. If normal distribution is accepted as the 

distribution function for the covariates, the identical distribution requirement is explained 

as the same average covariate values and associated standard deviations. Take travel time 

as an example. The two samples are required to have the same average travel time and 

standard deviation of travel time.  

 However, initial examination of descriptive statistics taken from the two sites 

reveals that the means and variances of the two sites are different across many variables; 

different average travel time, different average income .... etc.  The difference between 

direct observations of the two samples’ mode split will include a confounding effect as 

well as a parking charge impact.  

 To remove the confounding effect, an adjustment of the covariate values is 

required. The WP sample's covariate values are changed and this change is reapplied into 

a implicit change in the mode split. Take travel time as an example. The following Figure 

8.1 presents the different SOV travel time distributions for the MBL sample and the WP 

sample. 
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                Figure 8.1    Travel time distributions of two samples 

 

 Assume the travel time is a normally distributed variable for each travel mode. 

The adjustment process will continue with the change of average SOV travel time and 

associated standard deviation for the WP sample. Using the MBL sample's average travel 

time and the standard deviation as the parameters, a set of normally distributed elements 

can be generated by the random generator in Microsoft EXCEL for the WP sample. The 

number of the elements in the adjusted WP sample is the same as the number of 

individuals in the original WP sample.  

 Next is the method used to assign these elements to each individual in the WP 

sample. There are n! ways to assign these elements to the total of {n} individuals. A 

practical travel time adjustment process is used for this assignment. The objective is to 

attain the least change between each WP individual's current travel time for SOV and the 

element assigned to this individual.  

This objective is completed by minimizing the square of the sum of travel time 

changes for all individuals in the WP sample. This objective is expressed by a function 

Gk:  

 



                Min:    G y xk j i
k

K

= −
=
∑ ( )2

1
          ( k=1,2,,,K)                       (8.1) 

where,  

 yj -- the jth element for the adjusted travel time and  

 xi -- the original ravel time before the adjustment for individual i   

 k  -- the kth combination  

 The minimization process has been compiled as a computer program and this 

program is attached in Appendix F.  

After the assignment of the elements to each individual in the WP sample, these 

elements form the adjusted travel time for the SOV mode of the WP sample. Using the 

same procedure, all other covariates are adjusted for the three travel modes.  

 Then, these adjusted covariates are used to produce the adjusted mode choice for 

the individuals in the WP sample. The mode choices were produced through a Monte 

Carlo simulation using the explanatory CCLM model based on the adjusted covariate 

values. The simulation is conducted by the following steps: 

1) Compute the systematic utility for the three travel modes, SOV, Carpool and 

Transit, using adjusted covariate values for each individual of the WP sample, 

2) Generate a Weibull distributed variable as the random utility term,  

3) Compute the constraint values based on the original and adjusted covariate 

values, 

4) Choose the travel mode with the largest sum of systematic and random utility 

term under the corresponding the constraints. 

         The truth set has now been formed by assembling the MBL sample and the WP 

sample with adjusted covariates. The mode split obtained from the test sub-sample of the 

truth set is considered as the experiment result mr and will be compared with the forecast 

result by the CCLM model. 

 



8.2.3   Forecast and External Validity Test 

The forecast of the impact of a $3.00 parking charge on mode split is conducted by the 

explanatory  CCLM model with the following process; 

1) Taken as given, each WP individual's adjusted covariate values for the three 

travel modes as well as their personal information are used to compute the 

systematic utility and the corresponding constraints. 

2) Using the explanatory CCLM model, compute each WP individual's 

probabilities to switch to each proposed travel alternative following a $3.00 

parking charge imposition. 

3) Add all WP individuals' switching probabilities and then divide this sum by 

the total number of individuals in the WP sample. This final result is the 

aggregate mode split forecast mp. 

Based on the work above, the mode split in the real world, mr and the mode split 

forecast mp are obtained. The last step is the external validity test. The hypothesis for the 

external validity is the null difference between the actual mode split values and the 

forecast values. The t test is used to test the null hypothesis Ho, 

 

    Ho:       mr = mp                                             (8.2) 

 

The mode split in the real world is assumed statistically identical to the mode split 

forecast. As an alternative hypothesis, H1 is listed below for the situation where two mode 

split are not equal. 

 

    H1:       mr ≠ mp                           (8.3) 

 

The test statistic θ  is a t distributed variable and its values in this test can be 

computed by Equation (8.4): 



   θ
σ

=
−m m

n
p r

/
                                    (8.4)          

where, 

   mr -- the actual mode split obtained from the test sub-sample of the truth set 

mp -- the predicted mode split based on the control sub-sample and designed 

         parking charge imposition 

        σ -- the standard deviation for the aggregate mode split forecast 

        n  -- individual number in the sample. 

 

This test has to be performed for the three travel modes, respectively. If θ  is less 

than the pre-determined two-tail critical value ts/2(n-1) under the n-1 degree of freedom 

with significance of s, the external validity of CCLM model can not be rejected. 

Based on the discussion above, external validity test is summarized as the 

following process; 

1) Observe and record the MBL sample's mode split as the truth set’s behavior to 

the parking charge imposition. 

2) Adjust the WP sample's covariate distributions so that the WP covariate’s 

distribution has the same statistical values for the travel attributes and personal 

information as those of the MBL sample.  

3) Use WP sample's adjusted travel attributes and personal information to make a 

forecast of mode split under a $3.00 parking charge imposition.  

4) Test the null hypothesis between the mode split forecast and truth set’s mode 

split observed from the MBL sample.   

 

8. 3   Empirical Test 

This section presents the external validity test result for the CCLM model using the cross-

section experimental design described in the above section. 



A total of 58 individuals were selected from the WP site. The actual commuter 

mode split for the three travel modes: SOV, Carpool and Transit, were recorded based on 

the 1995 survey and are presented in the Table 8.1. The second column lists the numbers 

of individuals of the sample using each commute mode and the third column presents the 

mode split values. 

 

        Table 8.1   Actual un-adjusted historical mode split of the WP sample: July,1995 

         Travel mode                             Mode Share                          Mode Split 
                 (1)                                             (2)                                        (3) 

                SOV                                           40                                    68.97 % 
                CP                                                3                                      5.17 % 
                PT                                              15                                    25.86 % 
                TOTAL                                      58                                   100.00 % 

           

 

A second 58 individuals were selected from the MBL. The mode split values for 

the three travel modes were recorded and presented in Table 8.2.  

 

        Table 8.1   Actual un-adjusted historical mode split for MBL sample: July,1995  

   Travel mode                             Mode  Share                           Mode Split  
          (1)                                               (2)                                         (3) 

         SOV                                             38                                      65.51 % 
         CP                                                  7                                      12.07 % 
         PT                                                13                                      22.41 % 
         TOTAL                                        58                                    100.00 % 

 

  Table 8.3 presents the average covariates and associated standard deviations for 

the covariates of the two samples. 

 

     Table 8.3   Covariate averages for the two samples 



        Covariate                    The MBL Sample  
 Average      Sta. Dev. 

    The WP Sample 
Average     Sta. Dev. 

  t  test 
Statistic 

Travel time for SOV      35.57  22.10  29.12 18.04 1.72 
Travel Cost for SOV      5.88  3.09 2.81  2.57    5.81** 
Access Time for SOV  4.22 1.83 4.69 1.31 1.59 
Travel time for CP            47.53  24.24 41.09 21.86 1.50 
Travel Cost for CP       3.18  1.74 1.89  1.92    3.79** 
Access Time for CP       6.21  4.52 6.33 6.75 0.11 
Travel time for Transit       61.84  26.19 47.76 31.98     2.59** 
Travel Cost for Transit  4.03  2.71 3.24 2.76 1.56 
Access Time for Transi  13.20  13.10 9.63 9.95 1.65 
Attitude for SOV*              3.59  1.95 2.38 1.61     3.64** 
Attitude for CP*      4.33  1.78 4.33 1.67 0.00 
Attitude for Transit*     5.14  1.91 4.76 1.75 1.12 
Age Category*  2.84  0.41 2.13 0.53     8.07** 
Income Category*     3.48  1.05 2.38 1.18     5.30** 

              *These variables are rank order variables in the survey and assumed to belong to an underlying  
     continuous distribution  in the survey.  
** The values are larger than the critical value of 2.0 for two tailed t distribution at 0.05 level of 
     significance. 

 
 

For ease of computation, the underlying distributions of the variables shown in 

Table 8.3 are all assumed to act as continuous variables. The values in the parentheses are 

the standard deviations. It can be seen that some covariates, such as travel cost for the 

SOV and CP, attitude for the SOV, Age category and income category, differ with 

statistical significance between the MBL site and the WP site. 

The average covariate values and standard deviations for MBL were used to adjust 

the covariate distributions for the WP sample to form a truth set. The SOV travel time is 

taken as an example. The original travel time values are listed in the second row in Table 

8.4. Using the average travel time for the MBL sample and the associated standard 

deviation: 35.57 and 22.10, adjusted travel time for the WP sample were obtained and 

assigned to each individuals in the WP sample. The adjusted travel time are listed in the 

third row of Table 8.4.  

 

         Table 8.4  SOV travel time adjustment for individuals in the WP sample 



Individual No.   1 2 3 4 5 6 7 8 

Original SOV Travel Time   25 40 35 70 45 110 45 30 
Adjusted SOV Travel Time 31 48 46 79 63 92 67 40 

  

 

         Table 8.4  (continued) 

9 10 11 12 13 14 15 16 17 18 

65 60 40 25 25 15 15 35 15 30 
78 74 49 39 38 14 12 46 14 41 

 

         Table 8.4  (continued) 

19 20 21 22 23 24 25 26 27 28 

10 20 20 60 45 50 20 40 25 40 
10 25 28 74 67 71 22 51 31 49 

 

         Table 8.4  (continued) 

29 30 31 32 33 34 35 36 37 38 

30 45 45 20 32.5 40 15 50 45 20 
39 64 63 29 43 47 20 71 60 29 

 

         Table 8.4  (continued) 

39 40 41 42 43 44 45 46 47 48 

30 15 20 45 42.5 25 25 25 10 30 
42 16 28 57 54 38 37 37 10 40 

 

         Table 8.4  (continued) 

49 50 51 52 53 54 55 56 57 58 

15 6 20 20 17.5 20 20 45 25 10 



14 7 28 27 21 26 26 56 29 9 

 

 

 A Monte Carlo simulation was next conducted, using the explanatory CCLM 

model and the adjusted covariate values, to produce the individual mode choice. The 

mode split values for the three travel modes were then computed by averaging the 

individuals mode switching data. The mode split values with adjusted covariate values for 

the WP sample are listed in the second column of Table 8.5 as well as the MBL mode 

split values in the third column. The mode split data listed in Table 8.5 form the mode 

split observation of the truth set which will be used in the external validity test. 

 

  Table  8.5   WP sample mode split with adjusted covariates 

Travel mode                     WP Mode Split Value                        MBL Mode Split Value        
                                          (Adjusted Covariate)  

       (1)                                              (2)                                                      (3)  

      SOV                                       75.31 %                                             65.51 % 
      CP                                          10.86 %                                             12.07 % 
      PT                                          13.83 %                                             22.41 % 
      TOTAL                                100.00 %                                           100.00 % 

 

 

Table 8.6 presents the forecast values and the external validity test result. The 

adjusted mode split values for the truth set associated with the test condition are listed in 

the second column and mode split forecast values are listed in the third column of Table 

8.6. The mode split forecasts are obtained by the explanatory CCLM model derived in 

Section 7.3.  

In fact, all WP individual’s mode switching probabilities for each mode are 

averaged as the sample’s mode split values. The standard deviations are listed in the 



parenthesis in the third column of Table 8.6 based on the average of 58 individuals in the 

sample for the need of computation of statistic values. Column 4 lists the absolute values 

of the differences between the truth set values and the forecast values. The t statistic 

values in column 5  are computed by Equation (8.4). 

 

    Table 8.6  Adjusted mode split values and forecast value comparison 

   Mode         Mode Split Values        Mode Split Values            Forecast               t  Test  
                           (Truth Set)                     (Forecast)                      Error                Statistic 

     (1)                       (2)                                  (3)                              (4)                      (5) 

     SOV                65.51 %               66.65 %   (5.75 %)               1.14 %                1.5100 
     CP                   12.07 %               12.78 %   (2.37 %)               0.71 %                2.2815 
     PT                   22.41 %               20.57 %   (7.37 %)               1.84 %                1.9014 

 

 

         The two-tail critical value for the significance of the 0.05 level with degrees of 

freedom of 57 is 2.0; therefore, the null difference hypothesis can not be rejected for the 

SOV and PT modes. The null difference hypothesis for CP can be rejected. The reason 

for the rejection of the null difference hypothesis for the CP mode is that very few 

individuals in the two sites use carpool as their commute mode. The small number of 

observation causes a loss of accuracy when computing the mode split values for carpool. 

However, the mode split forecast for the WP sample generated by CCLM model is 

statistically identical with the adjusted observation for the MBL sample for the SOV and 

PT modes.  

 

 

 

 

 



8.4  Comparison with Other Research 

The cross-section experimental design and the empirical work conducted in the above 

section can be compared with the before and after research design and external validity 

test conducted by Beaton (1997). That study for the SC model by before and after design 

shows that the predicted market share for SOV changes from 100% in 1993 to a predicted 

83.2 % in 1995. The actual 1995 value reported from the subset of 1995 respondents is 

82.2 %. The difference between forecast for switching behavior and actual switching 

behavior is 1 %.  

 

8.4  Summary 

This chapter has presented the study results of an external validity test using a cross-

section experimental design for the CCLM model. The experimental technique used in 

this study certifies that 

1)  cross-sectional experimental design can be used in external validity test where 

panel data is not available. The two samples used in the cross-section 

experimental design must be identified as drawn from the same target 

population, and 

2)  to remove confounding factor, the covariates of two samples must be adjusted 

to have identical Distribution.  

The CCLM model has been identified valid through internal and external validity 

test. This study shows that the CCLM model can successfully forecast the mode split 

change associated with a parking charge imposition for the SOV and public transit 

modes.  

 

 

 

 



CHAPTER  9 

CONCLUSION 

This report develops the Constrained Conditional Logit Model based on the hypothesis 

that the existed resource constraints have significant effect on individual’s mode 

switching. Theoretical and empirical studies made in this report have supported the 

validity of this hypothesis. 

 The first contribution of this report is the development of the CCLM model which 

explicitly includes the resource constraint into the decision making process and then the 

switching probability function. This advance gets the discrete choice theory underlying 

travel mode choice consistent with the classical economic theory although the assumption 

of inclusion of constraints has been proposed in some papers described in Chapter 2. The 

explanatory model estimation and the internal and external validity study in this report 

shows that the Constrained Conditional Logit Model can successfully address this issue 

without increasing the complexity on the model estimation. 

  This model therefore provides a tool for evaluating the effect of various 

constraints. These constraints are no longer limited within time and cost, but extended to 

a broad field. This advance makes it possible to analyze the effect of other constraints, 

such as exogenously-imposed schedules, physical needs, authority and morality. 

 The second contribution is the advance on the model estimation. A factor grid 

searching approach which was developed originally in SP and RP data combination has 

been successfully applied on the joint estimation by the combination of two samples. This 

process not only improves the efficiency of the estimation but also provides a tool on the 

study of  transferability of empirical models.  

As the Constrained Conditional Logit Model corrects the errors caused by failing 

to incorporate constraints in the indirect utility function, more precise estimates for the 

attributes in systematic utility becomes passable. These improvement can help us to 



promote the accuracy on predicting the individuals’ mode switching on the different site 

and situation. 

 The third contribution is the improvement on the experimental design for external 

validity test. A cross-sectional design was used in this study to replace the longitude 

design which is usually used with panel data in the external validity test. The cross-

sectional design makes external validity test available in the situation where researchers 

have no opportunity to manipulate both test and control conditions in the actual 

experiment. 

 The cross-sectional design can also avoid the time effect in the longitude design, 

such as individual’s taste change with time. However, the cross-section experimental 

design can only be used under the following conditions: 

1)  the two samples used in the cross-section experimental design must be 

identified as drawn from the same target population, and 

2)  the two samples’s covariates distribution must be identical. Otherwise, the 

mode split values must be adjusted. 

 If the above two conditions are not true in the real situation, confounding factor 

will affect the observation of the actual mode switching behavior. The confounding effect 

caused by using two samples to form a truth set has been studied in this report. The 

adjustment of the covariate values of the two samples is another important contribution. 

Without removal of the confounding effect by the covariate values adjustment, cross-

sectional design has seldom opportunity to be applied since it is impractical to expect the 

two samples with identical distributions of attributes in the real world.     

 Further work is still needed to improve the approach for establishing empirical 

models. As indicated in the above chapters, how to design the proposed travel alternatives 

and the associated attributes so as to avoid the errors related to RP and SP combination is 

one of the existed issues. Further study about the survey method and data collection is 

necessary. 



 The analysis of the effects of other constraints, such as physical and morality, on 

the individual travel mode switching is needed by more empirical studies. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



APPENDIX  A   

DERIVATION OF CONDITIONAL LOGIT MODEL 

The utility used in discrete choice models is assumed as the sum of a systematic utility 

term Vni and a random term εni. Sub-index n and i here stand for individual n and 

alternative i. 

                          Uni = Vni+εni                                                        (A.1) 

 Given that the random term εni is a Weibull distributed variable. The density 

distribution function and the cumulative distribution function of εni are written as: 

                        f ni n n ni ni n ni ni( ) exp[ ( )]exp{ exp[ ( )]}ε µ µ ε λ µ ε λ= − − − − −              (A.2) 

and 

                        F ni n ni ni( ) exp{ exp[ ( )]}ε µ ε λ= − − −                                          (A.3) 

where, µn and λni are the scale factor and position factor. If term εni  is assumed to vary 

independently and identically (IID) for all alternatives and individuals, the probability 

that the utility obtained from alternative i is larger than all other alternatives can be 

written as : 

                       Pn (i) = Prob( Uni > max( Unj) ) = Prob( Vni+εni > max(Vnj+εnj))         

where, J is the total number of the alternatives available. Compute the probability of 

max(Vnj+εnj): 
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Then write max(Vnj+εnj) to be Vn*+εn* . The probability can be written as 

                   Prob(Vn*+ε*n < ε) = Prob(ε*n < ε - Vn*)  

    = − − − −exp{ exp[ ( * *)])µ ε λn n nV                                      (A.5) 



Compare Equation (A.4) with (A.5), we obtain  

                         exp[ ( * *)] exp[ ( )]µ λ µ λn n n n nj nj
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The probability of choosing alternative i is obtained as: 

              Pr ( * *)ob V Vn ni ni nε ε− < −  

   =
− < −
∫ f d dni n ni n

V Vn ni ni n

( *) *,
* *

ε ε ε ε
ε ε

 

     =
− < −
∫

ε ε

∂ ε ε
∂ε ∂ε

ε ε
n ni ni nV V

ni n

ni n
ni n

F d d
* *

( , *)
*

*
2

  

   =
−∞

+ −

−∞

∞

∫∫
d

d
F d

d
F d d

ni
i ni

n
j n ni n

V Vni ni n

ε
ε

ε
ε ε ε

ε

[ ( )]
*

[ ( *)] **

*

 

   =
−∞

∞

−∞

+ −

∫ ∫
d

d
F d

d
F d d

ni
i ni

n
j n n ni

V Vni ni n

ε
ε

ε
ε ε ε

ε

[ ( )]{
*

[ ( *)] *}*

*

 

                                  = + −
−∞

∞

∫
d

d
F F V V d

ni
i ni j ni ni j niε
ε ε ε[ ( )]{ ( *)}*                              (A.7) 

Take Equation (A.3) into Equation (A.7), we obtain : 
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Take Equation (A.6) into Equation (A.8), we obtain :           
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Assume that position factor λni in the above equation is zero, the probability of choosing 

alternative i  by individual  n  is obtained as : 
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                                                  (A.10) 

Equation (A10) is the ordinary form of the Conditional Logit Model. 

 

 

APPENDIX  B 

CONTROL FILE FOR SIMULATION 

The following control file was used in the estimation for the Constrained Conditional 

Logit Model in Chapter 5. 

 

****Estimation for the Constrained Conditional Logit Model**** 
DATA 19,1 
PRINT 80,63,3 
END 
 
- Parameter Definition 
 
01 Travel_Time 
02 Travel_Cost 
03 Out-Veh_Time 
04 Constraint_on_Travel_Time 
05 Constraints_on_Travel_Cost 
06 Constraint_on_Out-Veh_Time 
 
- Systematic Utility Function ( 1-Single Occupant Vehicle,  2-Carpool,  3-Transit) 



 
util001= p01*d02+p02*d03+p03*d04+p04*d11+p05*d12+p06*d13 
util002= p01*d05+p02*d06+p03*d07+p04*d14+p05*d15+p06*d16 
util003= p01*d08+p02*d09+p03*d10+p04*d17+p05*d18+p06*d19 
 

 The following control file was used in the estimation for the Conditional Logit 

Model in Chapter 5. 

 

****Estimation for the Conditional Logit Model**** 
DATA 19,1 
PRINT 80,63,3 
END 
 
- Parameter Definition 
 
01 Travel_Time 
02 Travel_Cost 
03 Out-Veh_Time 
 
- Utility Function ( 1-Single Occupant Vehicle,  2-Carpool,  3-Transit) 
 
util001= p01*d02+p02*d03+p03*d04 
util002= p01*d05+p02*d06+p03*d07 
util003= p01*d08+p02*d09+p03*d10 
 
 
 
 
 
 
 
 
 



APPENDIX  C 
SURVEY QUESTIONNAIRES 

 
Please consider each scenario independently and do not compare with others. (Values in 
bold change in each scenario) 
 
Alternative 1,  Single Occupant Vehicle 
 
  Cost of tolls and gas per day                                                          Your current cost*            

  Parking space charge per day                                                 $5.00/day($100/month) 
 

Alternative 2,  Carpool 
  Carpool costs per person per day                           1/2 your current drive alone cost* 
  Parking space charge per day                    1/2 your drive alone parking space charge 
  Pick up location                                                           A shopping center parking lot 
  Extra time required for carpooling                                10 min. for each one way trip 
  Guaranteed rider home                                                                Yes, 15 minute wait 

  Carpool subsidy paid to you per day                                                                   $0.00 
 

Alternative 3,  Public Transit 
  Transit fare per day                                                                             Current values* 
  Number of transfers                                                                          Current number* 

  Extra time required for transit                                       25 min. for each one way trip 
  Guaranteed rider home                                                                Yes, 15 minute wait  

  Transit subsidy paid to you per day                                       $0.00/day($0.00/month) 
 After comparing the characteristics of the three alternatives shown above, I 
choose: 

                                   ***Please check one and only one alternative***            
 Drive alone         (    ) 
 Carpool        (    ) 
 Transit + MBL van service      (    ) 

APPENDIX  D 

CONTROL FILE FOR ESTIMATION 



The following control file was used in the estimation for the Constrained Conditional 

Logit Model in Chapter 7. 
 

Estimation for the Constrained Conditional Logit Model 
DATA 27,1 
PRINT 80,63,3 
END 
 
- Parameter Definition 
 
01 SOV_constant 
02 CP_constant 
03 Travel_Time   
04 Travel_Cost 
05 Access_Time 
07 Attitude_SOV 
08 Attitude_CP 
09 Attitude_Transit 
10 Age  
11 Familiar  
12 Gender 
13 Income 
14 Travel_Time_Constraint 
15 Travel_Cost_Constraint  
 
- Systematic Utility Function ( 1-Single Occupant Vehicle,  2-Carpool,  3-Transit) 
 
 
util001=p01+p03*d02+p04*d03+p05*d04+p07*d12+p10*d15+      
+p11*d16+p12*d17+p13*d18+p14*d19+p15*d20 
util002= p02+p03*d05+p04*d06+p05*d07 +p08*d13 +p14*d22+p15*d23 
util003= p03*d08+p04*d09+p05*d10+p09*d14 +p14*d25+p15*d26 
 
 



The following control file was used in the estimation for the Conditional Logit Model in 

Chapter 7. 
 

**** Estimation for the Conditional Logit Model**** 
DATA 27,1 
PRINT 80,63,3 
END 
 
- Parameter Definition 
 
01 SOV_constant 
02 CP_constant 
03 Travel_Time   
04 Travel_Cost 
05 Access_Time 
07 Attitude_SOV 
08 Attitude_CP 
09 Attitude_Transit 
10 Age  
11 Familiar  
12 Gender 
13 Income 
 
- Systematic Utility Function ( 1-Single Occupant Vehicle,  2-Carpool,  3-Transit) 
 
 
util001=p01+p03*d02+p04*d03+p05*d04+p07*d12+p10*d15+      
+p11*d16+p12*d17+p13*d18 
util002= p02+p03*d05+p04*d06+p05*d07 +p08*d13 
util003= p03*d08+p04*d09+p05*d10+p09*d14 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX  E 

CONTROL FILE FOR JOINT ESTIMATION 

The following control file was used in the estimation for the joint Constrained 

Conditional Logit Model in Chapter 7. 
 

**** Estimation for Joint Constrained Conditional Logit Model**** 
DATA 31,1 
PRINT 80,63,3 
END 
 
- Parameters 
 
01 SOV_Constant_for_MBL 
02 CP_Constantfor_MBL 
03 SOV_Constant_for_WP 
04 CP_Constant_for_WP 
05 Travel_Time   
06 Travel_Cost 



07 Access_Time 
11 SOV_Attitude 
12 CP_Attitide 
13 Transit_Attitude 
14 Age for SOV 
16 Family_size for SOV 
18 Gender for SOV 
20 Income for SOV 
50 Travel_time_Constraint 
51 Travel_cost_Constraint 
 
- Systematic Utility Function ( 1-Single Occupant Vehicle, 2-Carpool, 3-Transit) 
 
util001= p01*d02+p03*d04+p05*d06+p06*d07+p07*d08+p11*d16+ 
    +p14*d19+p16*d20+p18*d21+p20*d22+ p51*d23+p52*d24 
util002= p02*d03+p04*d05+p05*d09+p06*d10+p07*d11+p12*d17 +p51*d26+p52*d27 
util003= p05*d12+p06*d13+p07*d14+p13*d18+p51*d29+p52*d30 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

APPENDIX  F 
PROGRAM FOR ATTRIBUTE ASSIGNMENT 

 
Program Assignment 
        implicit none 
        integer::l(58),i,j 
        real::old_value(58),new_value(58),hold 
        open(unit=13,file="oldvalue.txt",status="old") 
        read(13,*) old_value 
        open(unit=14,file="newvalue.txt",status="old") 
        read(14,*) new_value 
        do i=1,58 
                l(i)=i 
        end do 
        do i=1,58 
                do j=I+1,58 
                        if(old_value(i)<old_value(j)) then 
                                hold=old_value(j) 
                                old_value(j)=old_value(i) 
                                old_value(i)=hold 
                                hold=l(j) 
                                l(j)=l(i) 
                                l(i)=hold 
                        end if 
                        if(new_value(i)<new_value(j)) then 
                                hold=new_value(j) 
                                new_value(j)=new_value(i) 
                                new_value(i)=hold 
                        end if 
                end do 
        end do 
        do i=1,58 



                do j=1,58 
                        if(l(j).eq.i) old_value(i)=new_value(j) 
                end do 
        end do 
        open(unit=15,file="result.dat",status="old") 
        write(15,*) old_value 
        stop 
        End Program Assignment 
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